Krotov type optimization of coherent and incoherent controls for open two-qubit systems
The Bulletin of Irkutsk State University. Series Mathematics, Tome 45 (2023), pp. 3-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work considers two-qubit open quantum systems driven by coherent and incoherent controls. Incoherent control induces time-dependent decoherence rates via time-dependent spectral density of the environment which is used as a resource for controlling the system. The system evolves according to the Gorini–Kossakowski–Sudarshan–Lindblad master equation with time-dependent coefficients. For two types of interaction with coherent control, three types of objectives are considered: 1) maximizing the Hilbert–Schmidt overlap between the final and target density matrices; 2) minimizing the Hilbert–Schmidt distance between these matrices; 3) steering the overlap to a given value. For the first problem, we develop the Krotov type methods directly in terms of density matrices with or without regularization for piecewise continuous controls with constaints and find the cases where the methods produce (either exactly or with some precision) zero controls which satisfy the Pontryagin maximum principle and produce the overlap's values close to their upper bounds. For the problems 2) and 3), we find cases when the dual annealing method steers the objectives close to zero and produces a non-zero control.
Keywords: open quantum system, incoherent quantum control, nonlocal improvement, optimization.
@article{IIGUM_2023_45_a0,
     author = {Oleg V. Morzhin and Alexander N. Pechen},
     title = {Krotov type optimization of coherent and incoherent controls for open two-qubit systems},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {3--23},
     year = {2023},
     volume = {45},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2023_45_a0/}
}
TY  - JOUR
AU  - Oleg V. Morzhin
AU  - Alexander N. Pechen
TI  - Krotov type optimization of coherent and incoherent controls for open two-qubit systems
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2023
SP  - 3
EP  - 23
VL  - 45
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2023_45_a0/
LA  - en
ID  - IIGUM_2023_45_a0
ER  - 
%0 Journal Article
%A Oleg V. Morzhin
%A Alexander N. Pechen
%T Krotov type optimization of coherent and incoherent controls for open two-qubit systems
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2023
%P 3-23
%V 45
%U http://geodesic.mathdoc.fr/item/IIGUM_2023_45_a0/
%G en
%F IIGUM_2023_45_a0
Oleg V. Morzhin; Alexander N. Pechen. Krotov type optimization of coherent and incoherent controls for open two-qubit systems. The Bulletin of Irkutsk State University. Series Mathematics, Tome 45 (2023), pp. 3-23. http://geodesic.mathdoc.fr/item/IIGUM_2023_45_a0/

[1] Antipin A.S., “Minimization of convex functions on convex sets by means of differential equations”, Differ. Equat., 30:9 (1994), 1365–1375 | MR | Zbl

[2] Antonik V.G., Srochko V.A., “The projection method in linear-quadratic problems of optimal control”, Comput. Math. Math. Phys, 38 (1998), 543–551 | MR | Zbl

[3] Arguchintsev A.V., Dykhta V.A., Srochko V.A., “Optimal control: nonlocal conditions, computational methods, and the variational principle of maximum”, Russian Math. (Iz. VUZ), 53:1 (2009), 1–35 | DOI | MR | Zbl

[4] Boscain U., Sigalotti M., Sugny D., “Introduction to the Pontryagin maximum principle for quantum optimal control”, PRX Quantum, 2021, 030203 | DOI

[5] Buldaev A.S., Optimization Methods of Control Systems, Tutorial, ESSTU Publ, Ulan-Ude, 2002 (in Russian) https://search.rsl.ru/ru/record/01002370365

[6] Buldaev A.S., Morzhin O.V., “Improvement of controls in nonlinear systems on basis of boundary value problems”, The Bull. Irkutsk State Univ. Ser. Math, 2:1 (2009), 94–107 (in Russian)

[7] Butkovskiy A.G., Samoilenko Yu.I., Transl. of the book published in 1984 in Russian, Kluwer Acad. Publ., Dordrecht, 1990 | MR | Zbl

[8] Caneva T., Calarco T., Montangero S., “Chopped random-basis quantum optimization”, Phys. Rev. A, 84 (2011), 022326 | DOI

[9] de Fouquières P., Schirmer S.G., Glaser S.J., Kuprov I., “Second order gradient ascent pulse engineering”, J. Magn. Reson, 212 (2011), 412–417 | DOI

[10] Dong D.-Y., Chen C.-L., Tarn T.-J., Pechen A., Rabitz H., “Incoherent control of quantum systems with wavefunction controllable subspaces via quantum reinforcement learning”, IEEE Trans. Syst. Man Cybern, 2008, 957–962 | DOI | MR

[11] Goerz M.H., Reich D.M., Koch C.P., “Optimal control theory for a unitary operation under dissipative evolution”, New J. Phys, 16 (2014), 055012 ; Corrigendum: New J. Phys., 2021, 039501, arXiv: 1312.0111 | DOI | MR | Zbl | DOI | MR

[12] Gough J., Belavkin V.P., Smolyanov O.G., “Hamilton–Jacobi–Bellman equations for quantum optimal feedback control”, J. Opt. B: Quantum Semiclass. Opt., 7:10 (2005), S237-S244 | DOI | MR

[13] Jäger G., Reich D.M., Goerz M.H., Koch C.P., Hohenester U., “Optimal quantum control of Bose-Einstein condensates in magnetic microtraps: Comparison of GRAPE and Krotov optimization schemes”, Phys. Rev. A, 90 (2014), 033628 | DOI

[14] Judson R.S., Rabitz H., “Teaching lasers to control molecules”, Phys. Rev. Lett, 68 (1992), 1500 | DOI

[15] Kazakov V.A., Krotov V.F., “Optimal control of resonant interaction between light and matter”, Automat. Remote Control, 1987, 430–434 | MR

[16] Kallush S., Dann R., Kosloff R., “Controlling the uncontrollable: Quantum control of open system dynamics”, Sci. Adv, 8 (2022), eadd0828 | DOI

[17] Khaneja N., Reiss T., Kehlet C., Schulte-Herbrüggen T., Glaser S.J., “Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms”, J. Magn. Reson, 172 (2005), 296–305 | DOI

[18] Koch C.P., Boscain U., Calarco T., Dirr G., Filipp S., Glaser S.J., Kosloff R., Montangero S., Schulte-Herbrüggen T., Sugny D., Wilhelm F.K., “Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe”, EPJ Quantum Technol, 9 (2022), 19 | DOI | MR

[19] Krotov V.F., Feldman I.N., “An iterative method for solving problems of optimal control”, Engrg. Cybern, 21:2 (1983), 123–130 | MR

[20] Krotov V.F., Global Methods in Optimal Control Theory, Marcel Dekker, Inc, New York, 1996 | MR | Zbl

[21] Krotov V.F., “Control of the quantum systems and some ideas of the optimal control theory”, Autom. Remote Control, 70 (2009), 357–365 | DOI | MR | Zbl

[22] Krotov V.F., Bulatov A.V., Baturina O.V., “Optimization of linear systems with controllable coefficients”, Autom. Remote Control, 72 (2011), 1199–1212 | DOI | MR | Zbl

[23] Krotov V.F., Morzhin O.V., Trushkova E.A., “Discontinuous solutions of the optimal control problems. Iterative optimization method”, Automat. Remote Control, 74 (2013), 1948–1968 | DOI | MR | Zbl

[24] Lokutsievskiy L., Pechen A., “Reachable sets for two-level open quantum systems driven by coherent and incoherent controls”, J. Phys. A, 2021, 395304 | DOI | MR

[25] Morzhin O.V., “Nonlocal improvement of controlling functions and parameters in nonlinear dynamical systems”, Autom. Remote Control, 2012, 1822–1837 | DOI | MR | Zbl

[26] Morzhin O.V., Pechen A.N., “Krotov method for optimal control of closed quantum systems”, Russian Math. Surveys, 74 (2019), 851–908 | DOI | MR | Zbl

[27] Morzhin O.V., Pechen A.N., “Maximization of the overlap between density matrices for a two-level open quantum system driven by coherent and incoherent controls”, Lobachevskii J. Math, 40 (2019), 1532–1548 | DOI | MR | Zbl

[28] Morzhin O.V., Pechen A.N., “Optimal state manipulation for a two-qubit system driven by coherent and incoherent controls”, Quantum Inf. Process, 22 (2023), 241 | DOI | MR

[29] Oza A., Pechen A., Dominy J., Beltrani V., Moore K., Rabitz H., “Optimization search effort over the control landscapes for open quantum systems with Kraus-map evolution”, J. Phys. A, 42 (2009), 205305 | DOI | MR | Zbl

[30] Pechen A., Rabitz H., “Teaching the environment to control quantum systems”, Phys. Rev. A, 73 (2006), 062102 | DOI

[31] Pechen A., “Engineering arbitrary pure and mixed quantum states”, Phys. Rev. A, 84 (2011), 042106 | DOI

[32] Pechen A.N., Borisenok S., Fradkov A.L., “Energy control in a quantum oscillator using coherent control and engineered environment”, Chaos, Solitons Fractals, 164 (2022), 112687 | DOI | MR

[33] Petruhanov V.N., Pechen A.N., “Quantum gate generation in two-level open quantum systems by coherent and incoherent photons found with gradient search”, Photonics, 10 (2023), 220 | DOI

[34] Saff E.B., Kuijlaars A.B.J., “Distributing many points on a sphere”, Math. Intell, 19:1 (1997), 5–11 | DOI | MR | Zbl

[35] Srochko V.A., Iterative Methods for Solving Optimal Control Problems, Fizmatlit Publ, M., 2000 (in Russian) https://search.rsl.ru/ru/record/01000686861

[36] Srochko V.A., Ushakova S.N., “The method of complete quadratic approximation in optimal control problems”, Russian Math. (Iz. VUZ), 2004, no. 1, 84–90 | MR | Zbl

[37] Tannor D.J., Kazakov V., Orlov V., “Control of photochemical branching: Novel procedures for finding optimal pulses and global upper bounds”, Time-Dependent Quantum Molecular Dynamics, Springer, Boston, 1992, 347–360 | DOI

[38] Vasiliev O.V., Arguchintsev A.V., Optimization Methods in Tasks and Exercises, Fizmatlit Publ, M., 1999 (in Russian) https://search.rsl.ru/ru/record/01000641549

[39] Zhu W., Rabitz H., “A rapid monotonically convergent iteration algorithm for quantum optimal control over the expectation value of a positive definite operator”, J. Chem. Phys, 109 (1998), 385–391 | DOI