On Chu spaces over $SS-Act$ category
The Bulletin of Irkutsk State University. Series Mathematics, Tome 44 (2023), pp. 116-135 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove the general properties of morphisms of Chu spaces and functors with a value in the category $Chu(SS-Act)$ of Chu spaces over the category $SS-Act$. As a consequence, for the category $Chu(SS-Act)$ the existence of coproducts and some products is proved, monomorphisms and epimorphisms are characterized; in terms of this category the characteristics of separable and complete separable Chu spaces are given.
Keywords: Cartesian closed category, $S$-Act, Chu spaces, functors, limits.
@article{IIGUM_2023_44_a9,
     author = {Evgeniy E. Skurikhin and Alena A. Stepanova and Andrey G. Sukhonos},
     title = {On {Chu} spaces over $SS-Act$ category},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {116--135},
     year = {2023},
     volume = {44},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2023_44_a9/}
}
TY  - JOUR
AU  - Evgeniy E. Skurikhin
AU  - Alena A. Stepanova
AU  - Andrey G. Sukhonos
TI  - On Chu spaces over $SS-Act$ category
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2023
SP  - 116
EP  - 135
VL  - 44
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2023_44_a9/
LA  - en
ID  - IIGUM_2023_44_a9
ER  - 
%0 Journal Article
%A Evgeniy E. Skurikhin
%A Alena A. Stepanova
%A Andrey G. Sukhonos
%T On Chu spaces over $SS-Act$ category
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2023
%P 116-135
%V 44
%U http://geodesic.mathdoc.fr/item/IIGUM_2023_44_a9/
%G en
%F IIGUM_2023_44_a9
Evgeniy E. Skurikhin; Alena A. Stepanova; Andrey G. Sukhonos. On Chu spaces over $SS-Act$ category. The Bulletin of Irkutsk State University. Series Mathematics, Tome 44 (2023), pp. 116-135. http://geodesic.mathdoc.fr/item/IIGUM_2023_44_a9/

[1] Barr M., Wells C., Category Theory for Computing Science, Prentice Hall Publ, London, 1995, 325 pp.

[2] Kilp M., Knauer U., Mikhalev A.V., Monoids, acts and categories. With applications to wreath products and graphs, De Gruyter Publ, Berlin, 2000 | DOI

[3] Kozhukhov I.B., Mikhalev A.V., “Acts over semigroups”, Fundamental and Applied Mathematics, 23:3 (2020), 141–199 (in Russian)

[4] Mac Lane S., Categories for the working mathematician, Graduate Texts in Mathematics, Springer, New York, 1998

[5] Skurikhin E.E., “Presheaves of sets and actions of semigroups”, Far Eastern Mathematical Journal, 19:1 (2019), 63–74 (in Russian)

[6] Skurikhin E.E., Stepanova A.A., Sukhonos A.G., “Extensions of the category S-Act”, Sib. Elektron. Mat. Izv., 18 (2021), 1332–1357 | DOI

[7] Stepanova A.A., “S-acts over a Well-ordered Monoid with Modular Congruence Lattice”, The Bulletin of Irkutsk State University. Series Mathematics, 35 (2021), 87–102 | DOI

[8] Stepanova A.A., Chekanov S.G., “Congruence-permutable S-acts”, Siberian Mathematical Journal, 63:1 (2022), 167–172 | DOI | DOI

[9] Stepanova A.A., Skurikhin E.E., Sukhonos A.G., “Category of Chu spaces over S-Act category”, Sib. Elektron. Mat. Izv., 14 (2017), 1220–1237 (in Russian) | DOI

[10] Stepanova A.A., Skurikhin E.E., Sukhonos A.G., “Equalizers and coequalizers in categories of Chu spaces over S-Act categories”, Sib. Elektron. Mat. Izv., 16 (2019), 709–717 (in Russian) | DOI

[11] Stepanova A.A., Skurikhin E.E,. Sukhonos A.G., “Product of Chu spaces in the category of Chu(S-Act)”, Sib. Elektron. Mat. Izv., 17 (2020), 1352–1358 (in Russian) | DOI