Satisfiability problem in interval FP-logic
The Bulletin of Irkutsk State University. Series Mathematics, Tome 44 (2023), pp. 98-107

Voir la notice de l'article provenant de la source Math-Net.Ru

The article investigates the interval modal logic, in which an action of the modal operator $\Diamond$ is limited by the boundaries of an interval. In addition, the language of modal logic is extended by the operator $D (\alpha, \beta)$, the truth of which is determined qualitatively: it is true only if the number of points on the interval $[c_i ; c_{i+1}]$ where the formula $\alpha $ is true is strictly less than the number of points in this segment where the formula $\beta $ is true. The problem of satisfiability of formulas is solved, and as a consequence, the decidability of logic.
Keywords: modal logic, frame and model Kripke, satisfiability problem.
@article{IIGUM_2023_44_a7,
     author = {Nikita A. Protsenko and Vladimir V. Rybakov and Vitaliy V. Rimatskiy},
     title = {Satisfiability problem in interval {FP-logic}},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {98--107},
     publisher = {mathdoc},
     volume = {44},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2023_44_a7/}
}
TY  - JOUR
AU  - Nikita A. Protsenko
AU  - Vladimir V. Rybakov
AU  - Vitaliy V. Rimatskiy
TI  - Satisfiability problem in interval FP-logic
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2023
SP  - 98
EP  - 107
VL  - 44
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2023_44_a7/
LA  - en
ID  - IIGUM_2023_44_a7
ER  - 
%0 Journal Article
%A Nikita A. Protsenko
%A Vladimir V. Rybakov
%A Vitaliy V. Rimatskiy
%T Satisfiability problem in interval FP-logic
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2023
%P 98-107
%V 44
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIGUM_2023_44_a7/
%G en
%F IIGUM_2023_44_a7
Nikita A. Protsenko; Vladimir V. Rybakov; Vitaliy V. Rimatskiy. Satisfiability problem in interval FP-logic. The Bulletin of Irkutsk State University. Series Mathematics, Tome 44 (2023), pp. 98-107. http://geodesic.mathdoc.fr/item/IIGUM_2023_44_a7/