@article{IIGUM_2023_44_a4,
author = {Sreelatha Chandragiri},
title = {Counting lattice paths by using difference equations with non-constant coefficients},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {55--70},
year = {2023},
volume = {44},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2023_44_a4/}
}
TY - JOUR AU - Sreelatha Chandragiri TI - Counting lattice paths by using difference equations with non-constant coefficients JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2023 SP - 55 EP - 70 VL - 44 UR - http://geodesic.mathdoc.fr/item/IIGUM_2023_44_a4/ LA - en ID - IIGUM_2023_44_a4 ER -
Sreelatha Chandragiri. Counting lattice paths by using difference equations with non-constant coefficients. The Bulletin of Irkutsk State University. Series Mathematics, Tome 44 (2023), pp. 55-70. http://geodesic.mathdoc.fr/item/IIGUM_2023_44_a4/
[1] Abramov S.A., Barkatou M.A, Van Hoeij M., Petkovsek M., “Subanalytic solutions of linear difference equations and multidimensional hypergeometric sequences”, Journal of Symbolic Computation, 46:11 (2011), 1205–1228 | DOI
[2] Banderier C., Flajolet P., “Basic analytic combinatorics of directed lattice paths”, Theoretical Computer Science, 281 (2002), 37–80 | DOI
[3] Bloom D.M., “Singles in a sequence of coin tosses”, The College Mathematics Journal, 29:2 (1998), 120–127 | DOI
[4] Bousquet-M$\acute{e}$lou M., Petkov$\check{s}$ek M., “Linear recurrences with constant coefficients: the multivariate case”, Discrete Mathematics, 225 (2000), 51–75 | DOI
[5] Chandragiri S., “Difference Equations and Generating Functions for Some Lattice Path Problems”, Journal of Siberian Federal University. Mathematics Physics, 12:5 (2019), 551–559 | DOI
[6] Duchon P., “On the Enumeration and Generation of Generalized Dyck Words”, Discrete Mathematics, 225 (2000), 121–135 | DOI
[7] Gelfond A.O., The calculus of finite differences, KomKniga Publ, M., 2006 (in Russian)
[8] Gessel I.M., “A Factorization for Formal Laurent Series and Lattice Path Enumeration”, Journal of Combinatorial Theory, Series A, 28:3 (1980), 321–337 | DOI
[9] Labelle J., Yeh Y.N., “Generalized Dyck paths”, Discrete Mathematics, 82:1 (1990), 1–6 | DOI
[10] Leinartas E.K., “Multiple Laurent series and fundamental solutions of linear difference equations”, Siberian Mathematical Journal, 48:2 (2007), 268–272 | DOI
[11] Lyapin A.P., Chandragiri S., “Generating Functions for Vector Partitions and a Basic Recurrence Relation”, Journal of Difference Equations and Applications, 25:7 (2019), 1052–1061 | DOI
[12] Lyapin A.P., Chandragiri S., “The Cauchy Problem for Multidimensional Difference Equations in Lattice Cones”, Journal of Siberian Federal University. Mathematics Physics, 13:2 (2020), 187–196 | DOI
[13] de Moivre A., “De Fractionibus Algebraicis Radicalitate Immunibus ad Fractiones Simpliciores Reducendis, Deque Summandis Terminis Quarumdam Serierum Aequali Intervallo a Se Distantibus”, Philosophical Transactions, 32:373 (1722), 162–178 | DOI
[14] Stanley R., Enumerative Combinatorics, v. 1, Cambridge University Press, 1990