@article{IIGUM_2023_44_a2,
author = {Gayrat U. Urazboev and Muzaffar M. Khasanov and Iroda I. Baltaeva},
title = {Integration of the negative order {Korteweg-de} {Vries} equation with a special source},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {31--43},
year = {2023},
volume = {44},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2023_44_a2/}
}
TY - JOUR AU - Gayrat U. Urazboev AU - Muzaffar M. Khasanov AU - Iroda I. Baltaeva TI - Integration of the negative order Korteweg-de Vries equation with a special source JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2023 SP - 31 EP - 43 VL - 44 UR - http://geodesic.mathdoc.fr/item/IIGUM_2023_44_a2/ LA - ru ID - IIGUM_2023_44_a2 ER -
%0 Journal Article %A Gayrat U. Urazboev %A Muzaffar M. Khasanov %A Iroda I. Baltaeva %T Integration of the negative order Korteweg-de Vries equation with a special source %J The Bulletin of Irkutsk State University. Series Mathematics %D 2023 %P 31-43 %V 44 %U http://geodesic.mathdoc.fr/item/IIGUM_2023_44_a2/ %G ru %F IIGUM_2023_44_a2
Gayrat U. Urazboev; Muzaffar M. Khasanov; Iroda I. Baltaeva. Integration of the negative order Korteweg-de Vries equation with a special source. The Bulletin of Irkutsk State University. Series Mathematics, Tome 44 (2023), pp. 31-43. http://geodesic.mathdoc.fr/item/IIGUM_2023_44_a2/
[1] Dubrovin B.A., “Periodic problems for the Korteweg-de Vries equation in the class of finite band potentials”, Funct. Anal. Its Appl., 9 (1975), 215–223 | DOI
[2] Dubrovin B.A., Novikov S.P., “Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg-de Vries equation”, Journal of Experimental and Theoretical Physics, 67 (1975), 1058–1063
[3] Its A.R., Matveev V.B., “Schrodinger operators with finite-gap spectrum and N-soliton solutions of the Korteweg-de Vries equation”, Theor. Math. Phys., 23:1 (1975), 343–355 | DOI
[4] Levitan B.M., Sargsyan I.S., Sturm-Liouville and Dirac operators, Nauka Publ, M., 1988
[5] Marchenko V. A., “The periodic Korteweg-de Vries problem”, Mat. Sb. (N.S.), 24 (1974), 319–344
[6] Marchenko V.A., Ostrovskii I.V., “A characterization of the spectrum of Hill's operator”, Mathematics of the USSR-Sbornik, 26 (1975), 493–554 | DOI
[7] Mel'nikov V. K., A method for integrating the Korteweg-de Vries equation with a self-consistent source, Preprint No 2-88-11/798, Joint Institute for Nuclear Research, Dubna, 1988
[8] Novikov S.P., “The periodic problem for the Korteweg-de vries equation”, Funct. Anal. Its Appl., 8 (1974), 236–246
[9] Stankevich I.V., “A certain inverse spectral analysis problem for Hill's equation”, Doklady Akademii Nauk SSSR, 192 (1970), 34–37
[10] Titchmarsh E.C., Eigenfunction expansions associated with second-order differential equations, v. 2, Oxford University Press, London, 1958
[11] Urazboev G.U., Hasanov M.M., “Integration of the negative order Korteweg-de Vries equation with a self-consistent source in the class of periodic functions”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 32:2 (2022), 228–239 | DOI
[12] Khasanov A.B., Yakhshimuratov A.B., “The Korteweg-de Vries equation with a self-consistent source in the class of periodic functions”, Theoretical and Mathematical Physics, 164 (2010), 1008–1015 | DOI
[13] Chen J., “Quasi-periodic solutions to a negative-order integrable system of 2-component KdV equation”, International Journal of Geometric Methods in Modern Physics, 15:3 (2018), 1850040 | DOI
[14] Degasperis A., Procesi M., “Asymptotic integrability”, Symmetry and perturbation theory, World Scientific, Singapore, 1999, 23–37
[15] Gardner C. S., Greene J. M., Kruskal M. D., Miura R. M., “Method for solving the Korteweg – de Vries equation”, Physical Review Letters, 19:19 (1967), 1095–1097 | DOI
[16] Kuznetsova M., “Necessary and sufficient conditions for the spectra of the Sturm – Liouville operators with frozen argument”, Applied Mathematics Letters, 131 (2022), 108035 | DOI
[17] Lax P. D., “Periodic solutions of the KdV equation”, Communications on Pure and Applied Mathematics, 28:1 (1975), 141–188 | DOI
[18] Lax P. D., “Periodic solutions of the KdV equations”, Nonlinear wave motion, AMS, Providence, 1974, 85–96 | MR
[19] Lou S., “Symmetries of the KdV equation and four hierarchies of the integrodifferential KdV equations”, Journal of Mathematical Physics, 35:5 (1994), 2390–2396 | DOI
[20] Magnus W., Winkler W., Hill's equation, Interscience Publishers, New York, 1966
[21] Qiao Z., Fan E., “Negative-order Korteweg – de Vries equations”, Physical Review E, 86:1 (2012), 016601 | DOI
[22] Qiao Z., Li J., “Negative-order KdV equation with both solitons and kink wave solutions”, Europhysics Letters, 94:5 (2011), 50003 | DOI
[23] Rodriguez M., Li J., Qiao Z., “Negative order KdV equation with no solitary traveling waves”, Mathematics, 10:1 (2022), 48 | DOI
[24] Trubowitz E., “The inverse problem for periodic potentials”, Communications on Pure and Applied Mathematics, 30:3 (1977), 321–337 | DOI
[25] Verosky J. M., “Negative powers of Olver recursion operators”, Journal of Mathematical Physics, 32:7 (1991), 1733–1736 | DOI
[26] Wazwaz A.-M., “Negative-order KdV equations in (3+1) dimensions by using the KdV recursion operator”, Waves in Random and Complex Media, 27:4 (2017), 768–778 | DOI
[27] Zhang G., Qiao Z., “Cuspons and smooth solitons of the Degasperis-Procesi equation under inhomogeneous boundary condition”, Mathematical Physics, Analysis and Geometry, 10:3 (2007), 205–225 | DOI
[28] Zhao S., Sun Y., “A discrete negative order potential Korteweg-de Vries equation”, Zeitschrift furNaturforschung A, 71:12 (2016), 1151–1158 | DOI