Integration of the negative order Korteweg-de Vries equation with a special source
The Bulletin of Irkutsk State University. Series Mathematics, Tome 44 (2023), pp. 31-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider the negative order Korteweg-de Vries equation with a self-consistent source corresponding to the eigenvalues of the corresponding spectral problem. It is shown that the considered equation can be integrated by the method of the inverse spectral problem. The evolution of the spectral data of the Sturm-Liouville operator with a periodic potential associated with the solution of the considered equation is determined. The results obtained make it possible to apply the inverse problem method for solving the negative order Korteweg-de Vries equation with a self-consistent source corresponding to the eigenvalues of the corresponding spectral problem.
Keywords: negative order Korteweg-de Vries equation, self-consistent source, inverse spectral problem, system of Dubrovin-Trubovitz equations, trace formulas.
@article{IIGUM_2023_44_a2,
     author = {Gayrat U. Urazboev and Muzaffar M. Khasanov and Iroda I. Baltaeva},
     title = {Integration of the negative order {Korteweg-de} {Vries} equation with a special source},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {31--43},
     year = {2023},
     volume = {44},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2023_44_a2/}
}
TY  - JOUR
AU  - Gayrat U. Urazboev
AU  - Muzaffar M. Khasanov
AU  - Iroda I. Baltaeva
TI  - Integration of the negative order Korteweg-de Vries equation with a special source
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2023
SP  - 31
EP  - 43
VL  - 44
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2023_44_a2/
LA  - ru
ID  - IIGUM_2023_44_a2
ER  - 
%0 Journal Article
%A Gayrat U. Urazboev
%A Muzaffar M. Khasanov
%A Iroda I. Baltaeva
%T Integration of the negative order Korteweg-de Vries equation with a special source
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2023
%P 31-43
%V 44
%U http://geodesic.mathdoc.fr/item/IIGUM_2023_44_a2/
%G ru
%F IIGUM_2023_44_a2
Gayrat U. Urazboev; Muzaffar M. Khasanov; Iroda I. Baltaeva. Integration of the negative order Korteweg-de Vries equation with a special source. The Bulletin of Irkutsk State University. Series Mathematics, Tome 44 (2023), pp. 31-43. http://geodesic.mathdoc.fr/item/IIGUM_2023_44_a2/

[1] Dubrovin B.A., “Periodic problems for the Korteweg-de Vries equation in the class of finite band potentials”, Funct. Anal. Its Appl., 9 (1975), 215–223 | DOI

[2] Dubrovin B.A., Novikov S.P., “Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg-de Vries equation”, Journal of Experimental and Theoretical Physics, 67 (1975), 1058–1063

[3] Its A.R., Matveev V.B., “Schrodinger operators with finite-gap spectrum and N-soliton solutions of the Korteweg-de Vries equation”, Theor. Math. Phys., 23:1 (1975), 343–355 | DOI

[4] Levitan B.M., Sargsyan I.S., Sturm-Liouville and Dirac operators, Nauka Publ, M., 1988

[5] Marchenko V. A., “The periodic Korteweg-de Vries problem”, Mat. Sb. (N.S.), 24 (1974), 319–344

[6] Marchenko V.A., Ostrovskii I.V., “A characterization of the spectrum of Hill's operator”, Mathematics of the USSR-Sbornik, 26 (1975), 493–554 | DOI

[7] Mel'nikov V. K., A method for integrating the Korteweg-de Vries equation with a self-consistent source, Preprint No 2-88-11/798, Joint Institute for Nuclear Research, Dubna, 1988

[8] Novikov S.P., “The periodic problem for the Korteweg-de vries equation”, Funct. Anal. Its Appl., 8 (1974), 236–246

[9] Stankevich I.V., “A certain inverse spectral analysis problem for Hill's equation”, Doklady Akademii Nauk SSSR, 192 (1970), 34–37

[10] Titchmarsh E.C., Eigenfunction expansions associated with second-order differential equations, v. 2, Oxford University Press, London, 1958

[11] Urazboev G.U., Hasanov M.M., “Integration of the negative order Korteweg-de Vries equation with a self-consistent source in the class of periodic functions”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 32:2 (2022), 228–239 | DOI

[12] Khasanov A.B., Yakhshimuratov A.B., “The Korteweg-de Vries equation with a self-consistent source in the class of periodic functions”, Theoretical and Mathematical Physics, 164 (2010), 1008–1015 | DOI

[13] Chen J., “Quasi-periodic solutions to a negative-order integrable system of 2-component KdV equation”, International Journal of Geometric Methods in Modern Physics, 15:3 (2018), 1850040 | DOI

[14] Degasperis A., Procesi M., “Asymptotic integrability”, Symmetry and perturbation theory, World Scientific, Singapore, 1999, 23–37

[15] Gardner C. S., Greene J. M., Kruskal M. D., Miura R. M., “Method for solving the Korteweg – de Vries equation”, Physical Review Letters, 19:19 (1967), 1095–1097 | DOI

[16] Kuznetsova M., “Necessary and sufficient conditions for the spectra of the Sturm – Liouville operators with frozen argument”, Applied Mathematics Letters, 131 (2022), 108035 | DOI

[17] Lax P. D., “Periodic solutions of the KdV equation”, Communications on Pure and Applied Mathematics, 28:1 (1975), 141–188 | DOI

[18] Lax P. D., “Periodic solutions of the KdV equations”, Nonlinear wave motion, AMS, Providence, 1974, 85–96 | MR

[19] Lou S., “Symmetries of the KdV equation and four hierarchies of the integrodifferential KdV equations”, Journal of Mathematical Physics, 35:5 (1994), 2390–2396 | DOI

[20] Magnus W., Winkler W., Hill's equation, Interscience Publishers, New York, 1966

[21] Qiao Z., Fan E., “Negative-order Korteweg – de Vries equations”, Physical Review E, 86:1 (2012), 016601 | DOI

[22] Qiao Z., Li J., “Negative-order KdV equation with both solitons and kink wave solutions”, Europhysics Letters, 94:5 (2011), 50003 | DOI

[23] Rodriguez M., Li J., Qiao Z., “Negative order KdV equation with no solitary traveling waves”, Mathematics, 10:1 (2022), 48 | DOI

[24] Trubowitz E., “The inverse problem for periodic potentials”, Communications on Pure and Applied Mathematics, 30:3 (1977), 321–337 | DOI

[25] Verosky J. M., “Negative powers of Olver recursion operators”, Journal of Mathematical Physics, 32:7 (1991), 1733–1736 | DOI

[26] Wazwaz A.-M., “Negative-order KdV equations in (3+1) dimensions by using the KdV recursion operator”, Waves in Random and Complex Media, 27:4 (2017), 768–778 | DOI

[27] Zhang G., Qiao Z., “Cuspons and smooth solitons of the Degasperis-Procesi equation under inhomogeneous boundary condition”, Mathematical Physics, Analysis and Geometry, 10:3 (2007), 205–225 | DOI

[28] Zhao S., Sun Y., “A discrete negative order potential Korteweg-de Vries equation”, Zeitschrift furNaturforschung A, 71:12 (2016), 1151–1158 | DOI