Mots-clés : barycenter
@article{IIGUM_2023_44_a1,
author = {Vladimir I. Bogachev and Svetlana N. Popova},
title = {On {Radon} barycenters of measures on spaces of measures},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {19--30},
year = {2023},
volume = {44},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2023_44_a1/}
}
TY - JOUR AU - Vladimir I. Bogachev AU - Svetlana N. Popova TI - On Radon barycenters of measures on spaces of measures JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2023 SP - 19 EP - 30 VL - 44 UR - http://geodesic.mathdoc.fr/item/IIGUM_2023_44_a1/ LA - en ID - IIGUM_2023_44_a1 ER -
Vladimir I. Bogachev; Svetlana N. Popova. On Radon barycenters of measures on spaces of measures. The Bulletin of Irkutsk State University. Series Mathematics, Tome 44 (2023), pp. 19-30. http://geodesic.mathdoc.fr/item/IIGUM_2023_44_a1/
[1] Acciaio B., Beiglböck M., Pammer G., “Weak transport for non-convex costs and model-independence in a fixed-income market”, Math. Finance, 31:4 (2021), 1423–1453 | DOI
[2] Alibert J.-J., Bouchitté G., Champion T., “A new class of costs for optimal transport planning”, European J. Appl. Math., 30:6 (2019), 1229–1263 | DOI
[3] Arkhangel'ski{ĭ} A.V., Ponomarev V.I., Fundamentals of General Topology. Problems and Exercises, Translated from the Russian, Reidel, Dordrecht, 1984, 415 pp.
[4] Backhoff-Veraguas J., Beiglböck M., Pammer G., “Existence, duality, and cyclical monotonicity for weak transport costs”, Calc. Var. Partial Differ. Equ., 58:203 (2019), 1–28 | DOI
[5] Backhoff-Veraguas J., Pammer G., “Stability of martingale optimal transport and weak optimal transport”, Ann. Appl. Probab., 32:1 (2022), 721–752 | DOI
[6] Bogachev V.I., Measure Theory, In 2 vols., v. 1, Springer, Berlin, 2007, 500 pp. ; v. 2, 575 pp. | DOI
[7] Bogachev V.I., Weak Convergence of Measures, Amer. Math. Soc., Providence, Rhode Island, 2018, xii+286 pp. | DOI
[8] Bogachev V.I., “Kantorovich problems with a parameter and density constraints”, Siberian Math. J., 63:1 (2022), 34–47 | DOI
[9] Bogachev V.I., “The Kantorovich problem of optimal transportation of measures: new directions of research”, Uspehi Matem. Nauk (Russian Math. Surveys), 77:5 (2022), 3–52 (in Russian) | DOI
[10] Bogachev V.I., Malofeev I.I., “Nonlinear Kantorovich problems depending on a parameter”, The Bulletin of Irkutsk State University. Series Mathematics, 41 (2022), 96–106 | DOI
[11] Bogachev V.I., Rezbaev A.V., “Existence of solutions to the nonlinear Kantorovich problem of optimal transportation”, Mathematical Notes, 112:3 (2022), 369–377 | DOI
[12] Engelking P., General Topology, Polish Sci. Publ, Warszawa, 1977, 626 pp.
[13] Gozlan N., Roberto C., Samson P.-M., Tetali P., “Kantorovich duality for general transport costs and applications”, J. Funct. Anal., 273:11 (2017), 3327–3405 | DOI
[14] Steen L., Seebach J., Counterexamples in Topology, 2nd ed., Springer, New York, 1978, 244 pp.
[15] Topsøe F., “Preservation of weak convergence under mappings”, Ann. Math. Statist., 38:6 (1967), 1661–1665 | DOI