Mots-clés : liquid motion
@article{IIGUM_2023_44_a0,
author = {Viktor K. Andreev and Liliya I. Latonova},
title = {Solution of the inverse problem describing slow thermal convection in a rotating layer},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {3--18},
year = {2023},
volume = {44},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2023_44_a0/}
}
TY - JOUR AU - Viktor K. Andreev AU - Liliya I. Latonova TI - Solution of the inverse problem describing slow thermal convection in a rotating layer JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2023 SP - 3 EP - 18 VL - 44 UR - http://geodesic.mathdoc.fr/item/IIGUM_2023_44_a0/ LA - ru ID - IIGUM_2023_44_a0 ER -
%0 Journal Article %A Viktor K. Andreev %A Liliya I. Latonova %T Solution of the inverse problem describing slow thermal convection in a rotating layer %J The Bulletin of Irkutsk State University. Series Mathematics %D 2023 %P 3-18 %V 44 %U http://geodesic.mathdoc.fr/item/IIGUM_2023_44_a0/ %G ru %F IIGUM_2023_44_a0
Viktor K. Andreev; Liliya I. Latonova. Solution of the inverse problem describing slow thermal convection in a rotating layer. The Bulletin of Irkutsk State University. Series Mathematics, Tome 44 (2023), pp. 3-18. http://geodesic.mathdoc.fr/item/IIGUM_2023_44_a0/
[1] Andreev V.K., “On the solution of an inverse problem simulating two-dimensional motion of a viscous fluid”, Bulletin SUSU MMCS, 9:4 (2016), 5–16 (in Russian) | DOI
[2] Vladimirov V.S., Equations of mathematical physics, Nauka Publ, M., 1976 (in Russian)
[3] Gershuni G.Z., Zhukhovitsky E.M., Convective stability of an incompressible fluid, Nauka Publ, M., 1972, 392 pp.
[4] Landau L.D., Lipshits E.M., Hydrodynamics, Nauka Publ, M., 1986, 736 pp.
[5] Mikhlin S.G., Linear Partial Differential Equations, Vysshaya Shkola Publ, M., 1977, 431 pp. (in Russian)
[6] Olver F., Introduction to asymptotic methods and special functions, Nauka Publ, M., 1978, 375 pp.
[7] Polyanin A.D., Handbook. Linear equations of mathematical physics, Fizmatlit Publ, M., 2001, 576 pp. (in Russian)
[8] Pukhnachev V.V., “Exact Solutions of the Hydrodynamics Equations Derived from Partially Invariant Solutions”, Applied Mechanics and Technical Physics, 3 (2003), 317–323 (in Russian)
[9] Pukhnachev V.V., Symmetries in Navier-Stokes equations, CPI NSU Publ, Novosibirsk, 2022, 214 pp.
[10] Fridman A., Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, 1964
[11] V. K. Andreev, Y. A. Gaponenko, O. N. Goncharova, V. V. Pukhnachev, Mathematical models of convection, Walter de Gruyter Gmb H, Berlin–Boston, 2020, 432 pp.
[12] Andreev V. K., Latonova L. I., “Solution of the linear problem of thermal convection in liquid rotating layer”, J. Siber. Fed. Univ. Math. Phys., 15:6 (2022), 1–12 | DOI
[13] Pyatkov S. G., Safonov E. I., “On Some Classes of Linear Inverse Problem for Parabolic Equations”, Siberian Electronic Mathematical Reports, 11 (2014), 777–799
[14] Prilepko A. L., Orlovsky D. G., Vasin I. A., Methods for Solving Inverse Problem in Mathematical Physics, Marsel Dekker, New York–Basel, 1999
[15] Vasin I. A., Kamynin V. L., “On the Asymptotic Behavior of the Solutions of Inverse Problems for Parabolic Equations”, Siberian Mathematical Journal, 38:4 (1997), 647–662