Mots-clés : elliptic equations
@article{IIGUM_2023_43_a4,
author = {Viktoriia V. Liiko and Andrey B. Muravnik},
title = {Elliptic equations with arbitrarily directed translations in half-spaces},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {64--77},
year = {2023},
volume = {43},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2023_43_a4/}
}
TY - JOUR AU - Viktoriia V. Liiko AU - Andrey B. Muravnik TI - Elliptic equations with arbitrarily directed translations in half-spaces JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2023 SP - 64 EP - 77 VL - 43 UR - http://geodesic.mathdoc.fr/item/IIGUM_2023_43_a4/ LA - en ID - IIGUM_2023_43_a4 ER -
%0 Journal Article %A Viktoriia V. Liiko %A Andrey B. Muravnik %T Elliptic equations with arbitrarily directed translations in half-spaces %J The Bulletin of Irkutsk State University. Series Mathematics %D 2023 %P 64-77 %V 43 %U http://geodesic.mathdoc.fr/item/IIGUM_2023_43_a4/ %G en %F IIGUM_2023_43_a4
Viktoriia V. Liiko; Andrey B. Muravnik. Elliptic equations with arbitrarily directed translations in half-spaces. The Bulletin of Irkutsk State University. Series Mathematics, Tome 43 (2023), pp. 64-77. http://geodesic.mathdoc.fr/item/IIGUM_2023_43_a4/
[1] Gel'fand I. M., Silov G. E., “Fourier transforms of rapidly increasing functions and questions of uniqueness of the solution of Cauchy's problem”, Uspehi Matem. Nauk (N.S.), 8 (1953), 3–54 (in Russian)
[2] Gorenflo R., Luchko Yu.F., Umarov S. R., “On some boundary value problems for pseudo-differential equations with boundary operators of fractional order”, Fract. Calc. Appl. Anal., 3 (2000), 453–468
[3] Gurevich P. L., “Elliptic problems with nonlocal boundary conditions and Feller semigroups”, Journal of Mathematical Sciences, 182 (2012), 255–440 | DOI
[4] Muravnik A. B., “On the Cauchy problem for differential-difference equations of the parabolic type”, Dokl. Akad. Nauk, 66 (2002), 107–110
[5] Muravnik A. B., “On Cauchy problem for parabolic differential-difference equations”, Nonlinear Analysis, 51 (2002), 215–238 | DOI
[6] Muravnik A. B., “On the Dirichlet problem for differential-difference elliptic equations in a half-plane”, Journal of Mathematical Sciences, 235 (2018), 473–483 | DOI
[7] Muravnik A. B., “Elliptic differential-difference equations of general form in a half-space”, Mathematical Notes, 110 (2021), 92–99 | DOI | DOI
[8] Muravnik A. B., “Half-plane differential-difference elliptic problems with general-kind nonlocal potentials”, Complex Variables and Elliptic Equations, 67 (2022), 1101–1120 | DOI
[9] Muravnik A. B., “Elliptic equations with translations of general form in a half-space”, Mathematical Notes, 111 (2022), 587–594 | DOI | DOI
[10] Repnikov V. D., Eidel'man S. D., “Necessary and sufficient conditions for establishing a solution to the Cauchy problem”, Soviet Math. Dokl., 7 (1966), 388–391
[11] Repnikov V. D., Eidel'man S. D., “A new proof of the theorem on the stabilization of the solution of the Cauchy problem for the heat equation”, Sbornik: Mathematics, 2 (1967), 135–139 | DOI
[12] Shilov G. E., Mathematical analysis. The second special course, Moskow Univ. Publ., M., 1984 (in Russian)
[13] Skubachevskii A. L., Elliptic functional differential equations and applications, Birkhäuser, Basel-Boston-Berlin, 1997
[14] Skubachevskii A. L., “On the Hopf bifurcation for a quasilinear parabolic functional-differential equation”, Differential Equations, 34 (1998), 1395–1402
[15] Skubachevskii A. L., “Bifurcation of periodic solutions for nonlinear parabolic functional differential equations arising in optoelectronics”, Nonlinear Analysis, 32 (1998), 261–278
[16] Skubachevskii A. L., “Nonclassical boundary-value problems. I”, Journal of Mathematical Sciences, 155 (2008), 199–334 | DOI
[17] Skubachevskii A. L., “Nonclassical boundary-value problems. II”, Journal of Mathematical Sciences, 166 (2010), 377–561 | DOI
[18] Skubachevskii A. L., “Boundary-value problems for elliptic functional-differential equations and their applications”, Russian Mathematical Surveys, 71 (2016), 801–906 | DOI
[19] Stein E. M., Weiss G., “On the theory of harmonic functions of several variables. I: The theory of $H^p$ spaces”, Acta Mathematica, 103 (1960), 25–62
[20] Stein E. M., Weiss G., “On the theory of harmonic functions of several variables. II: Behavior near the boundary”, Acta Mathematica, 106 (1961), 137–174
[21] Vorontsov M. A., Iroshnikov N. G., Abernathy R. L., “Diffractive patterns in a nonlinear optical two-dimensional feedback system with field rotation”, Chaos, Solitons, and Fractals, 4 (1994), 1701–1716