@article{IIGUM_2023_43_a2,
author = {Durdimurod K. Durdiev and Asliddin A. Boltaev},
title = {The problem of determining kernels in a two-dimensional system of viscoelasticity equations},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {31--47},
year = {2023},
volume = {43},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2023_43_a2/}
}
TY - JOUR AU - Durdimurod K. Durdiev AU - Asliddin A. Boltaev TI - The problem of determining kernels in a two-dimensional system of viscoelasticity equations JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2023 SP - 31 EP - 47 VL - 43 UR - http://geodesic.mathdoc.fr/item/IIGUM_2023_43_a2/ LA - ru ID - IIGUM_2023_43_a2 ER -
%0 Journal Article %A Durdimurod K. Durdiev %A Asliddin A. Boltaev %T The problem of determining kernels in a two-dimensional system of viscoelasticity equations %J The Bulletin of Irkutsk State University. Series Mathematics %D 2023 %P 31-47 %V 43 %U http://geodesic.mathdoc.fr/item/IIGUM_2023_43_a2/ %G ru %F IIGUM_2023_43_a2
Durdimurod K. Durdiev; Asliddin A. Boltaev. The problem of determining kernels in a two-dimensional system of viscoelasticity equations. The Bulletin of Irkutsk State University. Series Mathematics, Tome 43 (2023), pp. 31-47. http://geodesic.mathdoc.fr/item/IIGUM_2023_43_a2/
[1] Galin L. A., Contact problems of the theory of elasticity and viscoelasticity, Nauka Publ, M., 1980 (in Russian)
[2] Godunov S. K., Equations of Mathematical Physics, Nauka Publ, M., 1979 (in Russian)
[3] Durdiev D. K., Rakhmonov A. A., “An Inverse Problem for a System of Integro-Differential Equations of SH-waves in a Viscoelastic Porous Medium: Global Solvability”, Teor. Mat. Fiz., 195:3 (2018), 491–506 | DOI
[4] Durdiev D. K., Rakhmonov A. A., “The Problem of Determining the 2D Kernel in a System of Integro-Differential Equations of a Viscoelastic Porous Medium”, Sibir. Zh. Ind. Mat., 23:2 (2020), 63–80 | DOI
[5] Durdiev D. K., Turdiev Kh.Kh., “An Inverse Problem for a First Order Hyperbolic System with Memory”, Differentsial'nye Uravneniya, 56:12 (2020), 1666–1675
[6] Durdiev U. D., “An Inverse Problem for the System of Viscoelasticity Equations in Homogeneous Anisotropic Media”, Sibir. Zh. Ind. Mat., 22:4 (2019), 26–32 | DOI
[7] Kolmogorov A. N., Fomin S. V., Elements of Function Theory and Functional Analysis, Nauka Publ, M., 1989 (in Russian)
[8] Romanov V. G., “The problem of finding the coefficients of a hyperbolic system”, Differentsial'nye Uravneniya, 14:1 (1978), 94–103 (in Russian)
[9] Romanov V. G., “Estimates of the stability of a solution in the problem of determining the kernel of the viscoelasticity equation”, Sibir. Zh. Ind. Mat., 15:1 (2012), 86–98 (in Russian)
[10] Romanov V. G., “The problem of determining the kernel in the equation of viscoelasticity”, Dokl. AN, 446:1 (2012), 18–20 (in Russian)
[11] Totieva Z. D., “One-dimensional inverse coefficient problems of anisotropic viscoelasticity”, Sib. El. Math. I., 16 (2019), 786–811 | DOI
[12] Totieva Z. D., “On the issue of studying the problem of determining the matrix kernel of the system of equations of anisotropic viscoelasticity”, Vladikavkaz. Mat. Zh., 21:2 (2019) | DOI
[13] Falaleev M. V., “On Solvability in the Class of Distributions of Degenerate Integro-Differential Equations in Banach Spaces”, The Bulletin of Irkutsk State University. Series Mathematics, 34 (2020), 77–92 | DOI
[14] Durdiev D. K., Rahmonov A. A., “A 2D kernel determination problem in a visco-elastic porous medium with a weakly horizontally inhomogeneity”, Mathematical Methods in the Applied Sciences, 43:15 (2020), 8776–8796 | DOI
[15] Durdiev D. K., Totieva Z. D., “The problem of determining the one-dimensional kernel of viscoelasticity equation with a source of explosive type”, Journal of Inverse and Ill-Posed Problems, 28:1 (2020), 43–52 | DOI
[16] Falaleev M. V., “Convolutional integro-differential equations in Banach spaces with a Noetherian operator in the main part”, Zhurnal SFU. Seriya: Matematika i fizika, 15:2 (2022), 150–161 | DOI
[17] Janno J., Von Wolfersdorf L., “Inverse problems for identification of memory kernels in viscoelasticity”, Math. Methods Appl. Sci., 20:4 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[18] Lorenzi A., “An identification problem related to a nonlinear hyperbolic integro-differential equation”, Nonlinear Anal., Theory, Methods Appl., 22:1 (1994), 21–44
[19] Romanov V. G., “On the determination of the coefficients in the viscoelasticity equations”, Siberian Math. J., 55:3 (2014), 503–510
[20] Safarov J.Sh., “Global solvability of the one-dimensional inverse problem for the integro-differential equation of acoustics”, Journal. SFU. Ser. Mat. and physical, 11:6 (2018), 753–763 | DOI