Optimal control of manipulator
The Bulletin of Irkutsk State University. Series Mathematics, Tome 43 (2023), pp. 3-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

When solving the problem of optimal performance for manipulative robots, the scientific team headed by F. L. Chernousko actively uses the Pontryagin maximum principle. The application of the maximum principle is complicated by the nonlinearities of controlled systems of manipulation robots. Therefore, when using it, the original mathematical model is replaced with a simpler one. These substitutions made it possible to analytically solve the problems of finding the switching points of relay controls for individual models of manipulation robots. In this paper, when finding the switching moments of relay controls for a manipulating robot, the original nonlinear controlled system is used. The problem is reduced to the problem of the existence of a solution to the boundary value problem for a controlled nonlinear system in the selected class of permissible controls that guarantee the arrival of the manipulator in the final position with zero speeds.
Keywords: optimal control, Pontryagin's maximum principle, manipulator.
@article{IIGUM_2023_43_a0,
     author = {Yurii F. Dolgii and Ilya A. Chupin},
     title = {Optimal control of manipulator},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {3--18},
     year = {2023},
     volume = {43},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2023_43_a0/}
}
TY  - JOUR
AU  - Yurii F. Dolgii
AU  - Ilya A. Chupin
TI  - Optimal control of manipulator
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2023
SP  - 3
EP  - 18
VL  - 43
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2023_43_a0/
LA  - en
ID  - IIGUM_2023_43_a0
ER  - 
%0 Journal Article
%A Yurii F. Dolgii
%A Ilya A. Chupin
%T Optimal control of manipulator
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2023
%P 3-18
%V 43
%U http://geodesic.mathdoc.fr/item/IIGUM_2023_43_a0/
%G en
%F IIGUM_2023_43_a0
Yurii F. Dolgii; Ilya A. Chupin. Optimal control of manipulator. The Bulletin of Irkutsk State University. Series Mathematics, Tome 43 (2023), pp. 3-18. http://geodesic.mathdoc.fr/item/IIGUM_2023_43_a0/

[1] Avetisyan V. V., Grigoryan Sh.A., “Time-Suboptimal Control Of A Two-Link Manipulator Motion”, Mechanics - Proccedings of NAS RA, 75:1–2 (2022), 61–72 | DOI

[2] Avetisyan V. V., “Time-Optimal Control of Gripper Motion in a Two-Link Manipulator with Allowance for the Terminal Configuration”, Autom Remote Control, 82:2 (2021), 189–199 | DOI

[3] Akulenko D. D., Bolotnik N. N., Kaplunov A. A., “Some control modes of industrial robots”, Proc. USSR Academy of Sciences. Tech. Cybernetics, 1985, no. 6

[4] Antipina N. V., “Optimal impulsive control by robots-manipulators”, Proceedings of the Sixth International Conference “Problems of mechanics of modern machines”, East Siberia State University of Technology and Management Publ, Ulan-Ude, 2015, 3–11

[5] Berlin L. M., Galyaev A.A., Lysenko P. V., “Geometric Approach to the Problem of Optimal Scalar Control of Two Nonsynchronous Oscillators”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 215, 2022, 40–51 | DOI

[6] Berlin L. M., Galyaev A.A., “Extremum Conditions for Constrained Scalar Control of Two Nonsynchronous Oscillators in the Time-Optimal Control Problem”, Dokl. Math., 106 (2022), 286–290 | DOI

[7] Dolgii Yu.F., Chupin I. A., “Impulse control of translational and rotational movements of the robot”, Robotics and Artificial Intelligence, 57, Krasnoyarsk, 2021, 77–90

[8] Dolgii Y. F., Sesekin A. N., Chupin I. A., “Impulse control of the manipulation robot”, Ural Mathematical Journal, 5:2 (2019), 13–20 | DOI

[9] Naumov N.Yu., Nunuparov A. M., Chernousko F. L., “Optimal Rotation of a Solid Body by a Moving Mass in the Presence of Phase Constraints”, J. Comput. Syst. Sci. Int., 61 (2022), 16–23 | DOI

[10] Pontryagin L. S., Boltjanskij V. G., Gamkrelidze R. V., Mishhenko E. F., Mathematical theory of optimal processes, Nauka Publ, M., 1983, 392 pp.

[11] Chernousko F. L., Bolotnik N. N., Gradetsky V. G., Manipulation robots. Dynamics, control, optimization, Nauka Publ, M., 1989, 368 pp.