Mots-clés : viscous fluid
@article{IIGUM_2022_42_a7,
author = {K. V. Forduk},
title = {Oscillations of a system of rigid bodies partially filled with viscous fluids under the action of an elastic damping device},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {103--120},
year = {2022},
volume = {42},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2022_42_a7/}
}
TY - JOUR AU - K. V. Forduk TI - Oscillations of a system of rigid bodies partially filled with viscous fluids under the action of an elastic damping device JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2022 SP - 103 EP - 120 VL - 42 UR - http://geodesic.mathdoc.fr/item/IIGUM_2022_42_a7/ LA - ru ID - IIGUM_2022_42_a7 ER -
%0 Journal Article %A K. V. Forduk %T Oscillations of a system of rigid bodies partially filled with viscous fluids under the action of an elastic damping device %J The Bulletin of Irkutsk State University. Series Mathematics %D 2022 %P 103-120 %V 42 %U http://geodesic.mathdoc.fr/item/IIGUM_2022_42_a7/ %G ru %F IIGUM_2022_42_a7
K. V. Forduk. Oscillations of a system of rigid bodies partially filled with viscous fluids under the action of an elastic damping device. The Bulletin of Irkutsk State University. Series Mathematics, Tome 42 (2022), pp. 103-120. http://geodesic.mathdoc.fr/item/IIGUM_2022_42_a7/
[1] Agranovich M. S., Sobolev Spaces, their Generalizations and Elliptic Problems in Smooth and Lipschitz Domains, MCCME Publ, M., 2013, 379 pp. (in Russian)
[2] Kato T., Perturbation Theory for Linear Operators, Mir Publ, M., 1972, 740 pp. (in Russian) | MR
[3] Kopachevsky N. D., Krein S. G., Ngo Zuy Kan, Operator Methods in Linear Hydrodynamics: Evolution and Spectral Problems, Nauka Publ, M., 1989, 416 pp. (in Russian) | MR
[4] Marchenko V. A., Introduction to the Theory of Inverse Spectral Analysis Problems, AKTA Publ, Harkov, 2005, 143 pp. (in Russian)
[5] Tsvetkov D. O., “Small Movements of a System of Ideal Stratified Fluids Completely Covered with Crumbled Ice”, The Bulletin of Irkutsk State University. Series Mathematics, 26 (2018), 105–120 http://mathizv.isu.ru/en/article?id=1285
[6] Tsvetkov D. O., “On an Initial-Boundary Value Problem Which Arises in the Dynamics of a Viscous Stratified Fluid”, Russ Math. (Iz. VUZ), 64:8 (2020), 50–63 | DOI | MR
[7] Forduk K. V., Zakora D. A., “Problem on Small Motions of a System of Bodies Filled with Ideal Fluids under the Action of an Elastic Damping Device”, Lobachevskii Journal of Mathematics, 42:5 (2021), 889–900 | DOI | MR
[8] Forduk K. V., Zakora D. A., “A Problem on Normal Oscillations of a System of Bodies Partially Filled with Ideal Fluids Under the Action of an Elastic Damping Device”, Sib. Elektron. Mat. Izv., 18:2 (2021), 997–1014 | DOI | MR
[9] Gagliardo E., “Caratterizazioni Delle Trace Sullo Frontiera Relative ad Alcune Classi de Funzioni in $n$ Variabili”, Rendiconti del Seminario Matematico della Universita di Padova, 27 (1957), 284–305 | MR
[10] Goldstein J. A., Semigroups of Linear Operators and Applications, Oxford University Press, New York–Oxford, 1985, 254 pp. | MR
[11] Kopachevsky N. D., Krein S. G., Operator Approach in Linear Problems of Hydrodynamics, v. 1, Self-adjoint Problems for an Ideal Fluid: Self-adjoint Problems for an Ideal Fluid, Birkhäuser Basel Publ., Basel–Boston–Berlin, 2001, 406 pp. | DOI | MR
[12] Kopachevsky N. D., Krein S. G., Operator Approach in Linear Problems of Hydrodynamics, v. 2, Nonself-adjoint Problems for Viscous Fluid, Birkhäuser Basel Publ., Basel–Boston–Berlin, 2003, 444 pp. | DOI | MR
[13] Staffans O. J., Well-Posed Linear Systems, Cambridge University Press, New York, 2005, 776 pp. | DOI | MR