@article{IIGUM_2022_42_a4,
author = {A. I. Kozhanov and G. I. Tarasova},
title = {The {Samarsky{\textendash}Ionkin} problem with integral perturbation for a pseudoparabolic equation},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {59--74},
year = {2022},
volume = {42},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2022_42_a4/}
}
TY - JOUR AU - A. I. Kozhanov AU - G. I. Tarasova TI - The Samarsky–Ionkin problem with integral perturbation for a pseudoparabolic equation JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2022 SP - 59 EP - 74 VL - 42 UR - http://geodesic.mathdoc.fr/item/IIGUM_2022_42_a4/ LA - ru ID - IIGUM_2022_42_a4 ER -
%0 Journal Article %A A. I. Kozhanov %A G. I. Tarasova %T The Samarsky–Ionkin problem with integral perturbation for a pseudoparabolic equation %J The Bulletin of Irkutsk State University. Series Mathematics %D 2022 %P 59-74 %V 42 %U http://geodesic.mathdoc.fr/item/IIGUM_2022_42_a4/ %G ru %F IIGUM_2022_42_a4
A. I. Kozhanov; G. I. Tarasova. The Samarsky–Ionkin problem with integral perturbation for a pseudoparabolic equation. The Bulletin of Irkutsk State University. Series Mathematics, Tome 42 (2022), pp. 59-74. http://geodesic.mathdoc.fr/item/IIGUM_2022_42_a4/
[1] Bitsadze A. V., Samarskiy A. A., “On some simplest generalizations of linear elliptic boundary value problems”, Dokl. Akad. Nauk SSSR, 185:4 (1969), 739–740 (in Russian)
[2] Demidenko G. V., Upsenskii S. V., Partial Differential Equations and Systems Not Solvable with Respect to the Highest-Order Derivative, CRC, 2003 | MR | MR
[3] Dzhenaliev M. T., On the theory of boundary value problems for loaded differential equations, Institute of Theoretical and Applied Mathematics Publ., Almaty, 1995, 269 pp. (in Russian)
[4] Ionkin N. I., “Solution of nonlocal problems for one-dimensional oscillations of a medium”, Differential Equations, 12:4 (1977), 294–304 (in Russian) | MR
[5] Kamynin L. I., “On certain boundary problem of head conduction with nonclassical boundary conditions”, J. of Comp. and Math. Physics, 4:6 (1964), 1006–1024 (in Russian) | DOI
[6] Kozhanov A. I., “On a Nonlocal Boundary Value Problem with Variable Coefficients for the Heat Equation and the Aller Equation”, Differential Equations, 40:6 (2004), 815–826 | DOI | MR
[7] Kozhanov A. I., Popov N. S., “On the solvability of some tasks with offset for pseudoparabolic equations”, Vestnik of NGU. Series: Mathematics, Mechanics, Informatics, 10:3 (2010), 63–75 (in Russian) | DOI
[8] Ladyzhenskaya O. A., Uraltseva N. N., Linear and quasi-linear equations of elliptic type, Academic Press, New York–London, 1968 | MR | MR
[9] Nakhushev A. M., Zadachi so smeshheniem dlja uravnenij v chastnyh proizvodnyh, Nauka Publ, M., 2006 (in Russian)
[10] Nakhushev A. M., Nagruzhennye uravnenija i ih primenenie, Nauka Publ, M., 2012 (in Russian)
[11] Popov N. S., “On the solvability of spatial nonlocal boundary value problems for one-dimensional pseudoparabolic and pseudohyperbolic equations”, Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 125:3 (2015), 29–42 (in Russian)
[12] Samarskii A. A., “Some problems of the theory of differential equations”, Differ. Uravn., 16:11 (1980), 1925–1935 (in Russian) | MR
[13] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner U. D., Linear and Non-Linear Sobolev-Type, Phizmatlit Publ, M., 2007 (in Russian)
[14] Sobolev C. L., Some applications of functional analysis in mathematical physics, Nauka Publ, M., 1988 | MR
[15] Soldatov A. P., Shhanukov M. H., “Boundary value problems with A. A. Samarskii general nonlocal condition for higher-order pseudoparabolic equations”, Dokl. Akad. Nauk SSSR, 297:3 (1987), 547–552 (in Russian)
[16] Steklov V. A., “A problem jn Cooling of a Solid”, Comm. of Khakov Math. Society, 5:3–4 (1897), 136–181 (in Russian) | MR
[17] Trenogin V. A., Functional analysis, Nauka Publ, M., 1980 (in Russian) | MR
[18] Yurchuk N. J., “A mixed problem with an integral condition for some parabolic equations”, Differ. Uravn., 22:12 (1986), 2117–2126 (in Russian) | MR
[19] Yusubov Sh.Sh., Mammadova J. J., “On solvability of an equation with dominating mixed derivative with integral boundary conditions”, Vestnik Bakinskogo Gos. Universiteta. Seriya Matematika, 2012, no. 3, 57–62 (in Russian)
[20] Bouziani A., “Initial-boundary value problems for a class of pseudoparabolic equations with integral boundary conditions”, Journal of Mathematical Analysis and Applications, 291:2 (2004), 371–386 | DOI | MR
[21] Bouziani A., “Solution to a semilinear pseudoparabolic problem with integral condition”, Electronic J. of Diff. Equat., 2006:115 (2006), 1–18 | MR
[22] Cannon J. R., “The solution of the heat equation subject to the specification of energy”, Quart. Appl. Math., 1963, no. 21, 155–160 | DOI | MR
[23] Chen P. J., Gurtin M. E., “On a theory of heat condition involving two temperatures”, Z. Angew. Math. Phys., 19 (1968), 614–627 | DOI
[24] Kozhanov A. I., Composite Type Equations and Inverse Problems, VSP, Utrecht, Netherlands, 1999 | MR
[25] Rundell W., “The Stefan Problem for a Pseudo-Heat Equarion”, Indiana University Math. Journal, 27:5 (1978), 739–750 | DOI | MR
[26] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht, the Netherlands, 2003 | DOI | MR
[27] Triebel H., Interpolation Theory. Functional Spaces. Differetial Operators, VEB Duetschen Verlag der Wissenschaften, Berlin, 1978 | MR