Mots-clés : diffusion wave, exact solution
@article{IIGUM_2022_42_a3,
author = {A. L. Kazakov and A. A. Lempert},
title = {Solutions of the second-order nonlinear parabolic system modeling the diffusion wave motion},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {43--58},
year = {2022},
volume = {42},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2022_42_a3/}
}
TY - JOUR AU - A. L. Kazakov AU - A. A. Lempert TI - Solutions of the second-order nonlinear parabolic system modeling the diffusion wave motion JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2022 SP - 43 EP - 58 VL - 42 UR - http://geodesic.mathdoc.fr/item/IIGUM_2022_42_a3/ LA - en ID - IIGUM_2022_42_a3 ER -
%0 Journal Article %A A. L. Kazakov %A A. A. Lempert %T Solutions of the second-order nonlinear parabolic system modeling the diffusion wave motion %J The Bulletin of Irkutsk State University. Series Mathematics %D 2022 %P 43-58 %V 42 %U http://geodesic.mathdoc.fr/item/IIGUM_2022_42_a3/ %G en %F IIGUM_2022_42_a3
A. L. Kazakov; A. A. Lempert. Solutions of the second-order nonlinear parabolic system modeling the diffusion wave motion. The Bulletin of Irkutsk State University. Series Mathematics, Tome 42 (2022), pp. 43-58. http://geodesic.mathdoc.fr/item/IIGUM_2022_42_a3/
[1] Andreev V. K., Gaponenko Yu.A., Goncharova O. N., Pukhnachev V. V., Mathematical models of convection, Walter De Gruyter, Berlin, 2012, 417 pp. | DOI | MR
[2] Bergman T. L., Lavine A. S., Incopera F. P., Dewitt D. P., Fundamentals of heat and mass transfer, John Wiley Sons, NY, 2011, 992 pp.
[3] Courant R., Hilbert D., Methods of Mathematical Physics, v. II, Partial Differential Equations, John Wiley Sons, NY, 2008, 852 pp. | MR
[4] DiBenedetto E., Degenerate Parabolic Equations, Springer-Verlag, NY, 1993, 388 pp. | DOI | MR
[5] Filimonov M.Yu., “Representation of solutions of boundary value problems for nonlinear evolution equations by special series with recurrently calculated coefficients”, Journal of Physics: Conference Series, 2019, 012071 | DOI
[6] Gambino G., Lombardo M. C., Sammartino M., Sciacca V., “Turing pattern formation in the Brusselator system with nonlinear diffusion”, Physical Review E, 88 (2013), 042925 | DOI
[7] Kazakov A. L., “On exact solutions to a heat wave propagation boundary-value problem for a nonlinear heat equation”, Siberian Electronic Mathematical Reports, 16 (2019), 1057–1068 (in Russian) | DOI
[8] Kazakov A. L., Kuznetsov P. A., “Analytical Diffusion Wave-type Solutions to a Nonlinear Parabolic System with Cylindrical and Spherical Symmetry”, Bulletin of Irkutsk State University, Series Mathematics, 37 (2021), 31–46 | DOI | MR
[9] Kazakov A. L., Kuznetsov P. A., “On the analytic solutions of a special boundary value problem for a nonlinear heat equation in polar coordinates”, Journal of Applied and Industrial Mathematics, 12:2 (2018), 255–263 | DOI | DOI | MR
[10] Kazakov A. L., Kuznetsov P. A., Lempert A. A., “Analytical solutions to the singular problem for a system of nonlinear parabolic equations of the reaction-diffusion type”, Symmetry, 12:6 (2020), 999 | DOI | MR
[11] Kazakov A. L., Kuznetsov P. A., Spevak L. F., “Construction of Solutions to a Boundary Value Problem with Singularity for a Nonlinear Parabolic System”, Journal of Applied and Industrial Mathematics, 15:4 (2021), 616–626 | DOI | DOI | MR
[12] Kazakov A. L., Orlov Sv.S., Orlov S. S., “Construction and study of exact solutions to a nonlinear heat equation”, Siberian Mathematical Journal, 59:3 (2018), 427–441 | DOI | DOI | MR
[13] Kazakov A. L., Spevak L. F., “Exact and approximate solutions of a degenerate reaction-diffusion system”, Journal of Applied Mechanics and Technical Physics, 62:4 (2021), 673–683 | DOI | DOI | MR
[14] Kazakov A. L., Nefedova O. A., Spevak L. F., “Solution of the problem of initiating the heat wave for a nonlinear heat conduction equation using the boundary element method”, Computational Mathematics and Mathematical Physics, 59:6 (2019), 1015–1029 | DOI | DOI | MR
[15] Ladyzenskaja O. A., Solonnikov V.A, Ural'ceva N. N., Linear and Quasi-linear Equations of Parabolic Type, Translations of mathematical monographs, American Mathematical Society Publ., Providence, 1968, 648 pp. | DOI | MR | MR
[16] Murray J., Mathematical biology: I. An introduction, Interdisciplinary applied mathematics, 17, Springer, NY, 2002, 575 pp. | DOI | MR
[17] Perthame B., Parabolic equations in biology. Growth, reaction, movement and diffusion, Springer, NY, 2015, 211 pp. | DOI | MR
[18] Polyanin A. D., Zaitsev V. F., Handbook of nonlinear partial differential equations, Chapman and Hall/CRC, NY, 2003, 840 pp. | DOI | MR
[19] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Blow-up in quasilinear parabolic equations, Walter de Gruyter, Berlin–New-York, 1995, 554 pp. | DOI | MR
[20] Sidorov A. F., Selected Works: Mathematics. Mechanics, Fizmatlit Publ, M., 2001, 576 pp. (in Russian) | MR
[21] Telch B., “Global boundedness in a chemotaxis quasilinear parabolic predator-prey system with pursuit-evasion”, Nonlinear Analysis: Real World Applications, 59 (2021), 103269 | DOI | MR
[22] Vabishchevich P. N., “Monotone Schemes for Convection-Diffusion Problems with Convective Transport in Different Forms”, Computational Mathematics and Mathematical Physics, 61:1 (2021), 90–102 | DOI | DOI | MR
[23] Vazquez J. L., The porous medium equation: mathematical theory, Clarendon Press, Oxford, 2007, 648 pp. | DOI | MR
[24] Zemskov E. P., “Turing instability in reaction-diffusion systems with nonlinear diffusion”, Journal of Experimental and Theoretical Physics, 117:4 (2013), 764–769 | DOI