@article{IIGUM_2022_42_a2,
author = {D. V. Khlopin},
title = {On control of probability flows with incomplete information},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {27--42},
year = {2022},
volume = {42},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2022_42_a2/}
}
D. V. Khlopin. On control of probability flows with incomplete information. The Bulletin of Irkutsk State University. Series Mathematics, Tome 42 (2022), pp. 27-42. http://geodesic.mathdoc.fr/item/IIGUM_2022_42_a2/
[1] Ambrosio L., Gigli N., Savare G., Gradient flows: in metric spaces and in the space of probability measures, Birkhauser Verlag, Basel, 2005, 334 pp. | MR
[2] Averboukh Y., Khlopin D., Pontryagin maximum principle for the deterministic mean field type optimal control problem via the Lagrangian approach, 2022, arXiv: 2207.01892
[3] Averboukh Yu., Marigonda A., Quincampoix M., “Extremal Shift Rule and Viability Property for Mean Field-Type Control Systems”, J. Optim. Theory Appl., 189 (2021), 244–270 | DOI | MR
[4] Bensoussan A., Frehse J., Yam P., Mean field games and mean field type control theory, Springer, NY, 2013 | DOI | MR
[5] Beer G., “Wijsman convergence: a survey”, Set-Valued Anal., 2:1–2 (1994), 77–94 | DOI | MR
[6] Cavagnari G., Lisini S., Orrieri C., Savaré G., “Lagrangian, Eulerian and Kantorovich formulations of multi-agent optimal control problems: Equivalence and Gamma-convergence”, J. Diff. Eq., 322 (2022), 268–364 | DOI | MR
[7] Cesaroni A., Cirant M., “One-dimensional multi-agent optimal control with aggregation and distance constraints: qualitative properties and mean-field limit”, Nonlinearity, 34:3 (2021), 1408 | DOI | MR
[8] Pogodaev N., “Program strategies for a dynamic game in the space of measures”, Optim. Lett., 13 (2019), 1913–1925 | DOI | MR