Existence and stability of solutions for a class of stochastic fractional partial differential equation with a noise
The Bulletin of Irkutsk State University. Series Mathematics, Tome 41 (2022), pp. 107-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work, we will introduce a fractional Duhamel principle and use it to establish the well-boundedness and stability of a mild solution to an original fractional stochastic equation with initial data.
Keywords: stochastic fractional partial differental equation, fractional derivative, mild solution, stability.
@article{IIGUM_2022_41_a7,
     author = {N. Bouteraa},
     title = {Existence and stability of solutions for a class of stochastic fractional partial differential equation with a noise},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {107--120},
     year = {2022},
     volume = {41},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2022_41_a7/}
}
TY  - JOUR
AU  - N. Bouteraa
TI  - Existence and stability of solutions for a class of stochastic fractional partial differential equation with a noise
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2022
SP  - 107
EP  - 120
VL  - 41
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2022_41_a7/
LA  - en
ID  - IIGUM_2022_41_a7
ER  - 
%0 Journal Article
%A N. Bouteraa
%T Existence and stability of solutions for a class of stochastic fractional partial differential equation with a noise
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2022
%P 107-120
%V 41
%U http://geodesic.mathdoc.fr/item/IIGUM_2022_41_a7/
%G en
%F IIGUM_2022_41_a7
N. Bouteraa. Existence and stability of solutions for a class of stochastic fractional partial differential equation with a noise. The Bulletin of Irkutsk State University. Series Mathematics, Tome 41 (2022), pp. 107-120. http://geodesic.mathdoc.fr/item/IIGUM_2022_41_a7/

[1] Bensoussan A., Temam R., “Equations stochastiques du type Navier-Stokes”, J. Functional Analysis, 13 (1973), 195–222 | DOI | MR | Zbl

[2] Biagini F., Hu Y., Oksendal B., Zhang T., Stochastic calculus for fractional Brownian motion and applications, Springer, 2008 | MR | Zbl

[3] Bouteraa N., Inc M., Akgul A., “Stability analysis of time-fractional differential equations with initial data”, Math. Meth. Appl. Sci., 2021, 1–9 | MR

[4] Bouteraa N., Inc M., Akinlar M. A., Almohsen B., “Mild solutions of fractional PDE with noise”, Math. Meth. Appl. Sci., 2021, 1–15 | MR

[5] Caraballo T., Liu K., “Exponential stability of mild solutions of stochastic partial differential equations with delays”, Stoch. Anal. Appl., 17 (1993), 743–763 | DOI | MR

[6] Djourdem H., Bouteraa N., “Mild solution for a stochastic partial differential equation with noise”, WSEAS Transactions on Systems, 19 (2020), 246–256 | DOI

[7] De Carvalho-Neto P. M., Gabriela P., “Mild solutions to the time fractional Navier-Stokes equations in $\mathbb{R}^{n}$”, J. Differential Equations, 259 (2015), 2948–2980 | DOI | MR | Zbl

[8] Govindan T. E., “Stability of mild solutions of stochastic evolutions with variable decay”, Stoch. Anal. Appl., 21 (2003), 1059–1077 | DOI | MR | Zbl

[9] Hormander L., The Analysis of Linear Partial Differential Operators, Springer, Berlin, 2005 | MR | Zbl

[10] Inc M., Bouteraa N., Akinlar M. A., Chu Y. M., Weber G. W., Almohsen B., “New positive solutions of nonlinear elliptic PDEs”, Applied Sciences, 10 (2020), 4863 | DOI

[11] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006 | MR | Zbl

[12] Liu K., Stability of Infnite Dimensional Stochastic Differential Equations with Applications, Chapman Hall, CRC, London, 2006 | MR

[13] Luo J., “Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays”, J. Math. Anal. Appl., 342:2 (2008), 753–760 | DOI | MR | Zbl

[14] Mao X., Stochastic Differential Equations and Applications, Horwood Publishing Limited, Chichester, UK, 1997 | MR | Zbl

[15] Magin R. L., Fractional Calculus in Bioengineering, Begell House Publishers, 2006

[16] Meerschaert M. M., Sikorskii A., Stochastic Models for Fractional Calculus, De Gruyter Studies in Mathematics, 43, Walter de Gruyter, Berlin–Boston, 2012 | MR

[17] Metler R., Klafter J., “The restaurant at the end of random walk: recent developments in the description of anomalous transport by fractional dynamics”, J. Phys. A: Math. Gen., 37 (2004), 161–208 | DOI | MR

[18] Rihan F. A., Alsakaji H. J., Rajivganthi C., “Stochastic SIRC epidemic model with time delay for COVID-19”, Adv. Differ. Equ., 502 (2020) | DOI | MR | Zbl

[19] Podlubny I., Fractional Differential Equations, Academic Press, New York, 1993 | MR

[20] Sakthivel R., Ren Y., “Exponential stability of second-order stochastic evolution equations with Poisson jumps”, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4517–4523 | DOI | MR | Zbl

[21] Seemab A., Rehman M., “A note on fractional Duhamel's principle and its application to a class of fractional partial differential equations”, Applied Mathematics Letters, 64 (2017), 8–14 | DOI | MR | Zbl

[22] Vashik M. J., Fursikov A. V., Mathematical problems of statistical hydromechanics, Kluver Dordreech, 1980 | MR

[23] Umarov S., Saydamatov E., “A Fractional Analog of the Duhamel Principle”, Fract. Calc. Appl. Anal., 9 (2006), 57–70 | MR | Zbl

[24] Umarov S., “On fractional Duhamel's principle and its applications”, J. Differential Equations, 252 (2012), 5217–5234 | DOI | MR | Zbl

[25] Wen Y., Zhou X. F., Wang J., “Stability and boundedness of solutions of the initial value problem for a class of time-fractional diffusion equations”, Advances in Difference Equations, 230 (2017) | DOI | MR

[26] Yang D., “m-Dissipativity for Kolmogorov operator of fractional Burgers equation with space-time white noise”, Potential anal., 44 (2016), 215–227 | DOI | MR | Zbl

[27] Zou G., Wang B., “Stochastic Burgers equation with fractional derivative driven by multiplicative noise”, Comput. Math. Appl., 74:12 (2017), 3195–3208 | DOI | MR | Zbl