@article{IIGUM_2022_41_a6,
author = {Vladimir I. Bogachev and Ilya I. Malofeev},
title = {Nonlinear {Kantorovich} problems with a parameter},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {96--106},
year = {2022},
volume = {41},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2022_41_a6/}
}
TY - JOUR AU - Vladimir I. Bogachev AU - Ilya I. Malofeev TI - Nonlinear Kantorovich problems with a parameter JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2022 SP - 96 EP - 106 VL - 41 UR - http://geodesic.mathdoc.fr/item/IIGUM_2022_41_a6/ LA - en ID - IIGUM_2022_41_a6 ER -
Vladimir I. Bogachev; Ilya I. Malofeev. Nonlinear Kantorovich problems with a parameter. The Bulletin of Irkutsk State University. Series Mathematics, Tome 41 (2022), pp. 96-106. http://geodesic.mathdoc.fr/item/IIGUM_2022_41_a6/
[1] Alibert J.-J., Bouchitté G., Champion T., “A new class of costs for optimal transport planning”, European. J. Appl. Math., 30:6 (2019), 1229–1263 | DOI | MR | Zbl
[2] Ambrosio L., Gigli N., “A user's guide to optimal transport”, Lecture Notes in Math., 2062, 2013, 1–155 | DOI | MR
[3] Backhoff-Veraguas J., Beiglböck M., Pammer G., “Existence, duality, and cyclical monotonicity for weak transport costs”, Calc. Var. Partial Differ. Equ., 58:203 (2019), 1–28 | DOI | MR
[4] Backhoff-Veraguas J., Pammer G., “Applications of weak transport theory”, Bernoulli, 28:1 (2022), 370–394 | DOI | MR | Zbl
[5] Bogachev V. I., Measure Theory, v. 1, Springer, Berlin, 2007, 500 pp. ; v. 2, 575 pp. | DOI | MR | Zbl
[6] Bogachev V. I., Weak Convergence of Measures, Amer. Math. Soc., Providence, Rhode Island, 2018, 286 pp. | DOI | MR | Zbl
[7] Bogachev V. I., Doledenok A. N., Malofeev I. I., “The Kantorovich problem with a parameter and density constraints”, Mathematical Notes, 110:6 (2021), 149–153 | DOI | MR | Zbl
[8] Bogachev V. I., Kolesnikov A. V., “The Monge – Kantorovich problem: achievements, connections, and prospects”, Russian Math. Surveys, 67:5 (2012), 785–890 | DOI | MR | Zbl
[9] Bogachev V. I., Malofeev I. I., “Kantorovich problems and conditional measures depending on a parameter”, J. Math. Anal. Appl., 486:1 (2020), 1–30 | DOI | MR | Zbl
[10] Dedecker J., Prieur C., Raynaud De Fitte P., “Parametrized Kantorovich–Rubinštein theorem and application to the coupling of random variables. Dependence in probability and statistics”, Lect. Notes Stat., 187 (2006), 105–121 | DOI | MR | Zbl
[11] Dellacherie C., “Un cours sur les ensembles analytiques”, Analytic sets, Academic Press, New York, 1980, 184–316 | MR
[12] Doledenok A. N., “On a Kantorovich problem with a density constraint”, Math. Notes, 104:1 (2018), 39–47 | DOI | DOI | MR | Zbl
[13] Engelking P., General Topology, Warszawa, Polish Sci. Publ, 1977, 626 pp. | MR | Zbl
[14] Gozlan N., Roberto C., Samson P.-M., Tetali P., “Kantorovich duality for general transport costs and applications”, J. Funct. Anal., 273:11 (2017), 3327–3405 | DOI | MR | Zbl
[15] Korman J., McCann R. J., “Optimal transportation with capacity constraints”, Trans. Amer. Math. Soc., 367:3 (2015), 1501–1521 | DOI | MR | Zbl
[16] Kuksin S., Nersesyan V., Shirikyan A., “Exponential mixing for a class of dissipative PDEs with bounded degenerate noise”, Geom. Funct. Anal. (GAFA), 30:1 (2020), 126–187 | DOI | MR | Zbl
[17] Rachev S. T., Rüschendorf L., Mass Transportation Problems, v. 1, Springer, New York, 1998, 508 pp. ; v. 2, 430 pp. | Zbl
[18] Santambrogio F., Optimal Transport for Applied Mathematicians, Birkhäuser/Springer, Cham, 2015, 353 pp. | DOI | MR | Zbl
[19] Villani C., Optimal Transport, Old and New, Springer, New York, 2009, 973 pp. | DOI | MR | Zbl