Nonlinear Kantorovich problems with a parameter
The Bulletin of Irkutsk State University. Series Mathematics, Tome 41 (2022), pp. 96-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider nonlinear Kantorovich problems with marginal distributions and cost functions depending measurably on a parameter and prove that there exist optimal transportation plans that are also measurable with respect to the parameter. Unlike the classical linear Kantorovich problem of minimization of the integrals of a given cost function with respect to transportation plans, we deal with nonlinear cost functionals in which integrands depend on transportation plans. Dependence of cost functions on conditional measures of transportation plans is also allowed.
Keywords: Kantorovich problem, optimal plan, measurability with respect to a parameter.
@article{IIGUM_2022_41_a6,
     author = {Vladimir I. Bogachev and Ilya I. Malofeev},
     title = {Nonlinear {Kantorovich} problems with a parameter},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {96--106},
     year = {2022},
     volume = {41},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2022_41_a6/}
}
TY  - JOUR
AU  - Vladimir I. Bogachev
AU  - Ilya I. Malofeev
TI  - Nonlinear Kantorovich problems with a parameter
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2022
SP  - 96
EP  - 106
VL  - 41
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2022_41_a6/
LA  - en
ID  - IIGUM_2022_41_a6
ER  - 
%0 Journal Article
%A Vladimir I. Bogachev
%A Ilya I. Malofeev
%T Nonlinear Kantorovich problems with a parameter
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2022
%P 96-106
%V 41
%U http://geodesic.mathdoc.fr/item/IIGUM_2022_41_a6/
%G en
%F IIGUM_2022_41_a6
Vladimir I. Bogachev; Ilya I. Malofeev. Nonlinear Kantorovich problems with a parameter. The Bulletin of Irkutsk State University. Series Mathematics, Tome 41 (2022), pp. 96-106. http://geodesic.mathdoc.fr/item/IIGUM_2022_41_a6/

[1] Alibert J.-J., Bouchitté G., Champion T., “A new class of costs for optimal transport planning”, European. J. Appl. Math., 30:6 (2019), 1229–1263 | DOI | MR | Zbl

[2] Ambrosio L., Gigli N., “A user's guide to optimal transport”, Lecture Notes in Math., 2062, 2013, 1–155 | DOI | MR

[3] Backhoff-Veraguas J., Beiglböck M., Pammer G., “Existence, duality, and cyclical monotonicity for weak transport costs”, Calc. Var. Partial Differ. Equ., 58:203 (2019), 1–28 | DOI | MR

[4] Backhoff-Veraguas J., Pammer G., “Applications of weak transport theory”, Bernoulli, 28:1 (2022), 370–394 | DOI | MR | Zbl

[5] Bogachev V. I., Measure Theory, v. 1, Springer, Berlin, 2007, 500 pp. ; v. 2, 575 pp. | DOI | MR | Zbl

[6] Bogachev V. I., Weak Convergence of Measures, Amer. Math. Soc., Providence, Rhode Island, 2018, 286 pp. | DOI | MR | Zbl

[7] Bogachev V. I., Doledenok A. N., Malofeev I. I., “The Kantorovich problem with a parameter and density constraints”, Mathematical Notes, 110:6 (2021), 149–153 | DOI | MR | Zbl

[8] Bogachev V. I., Kolesnikov A. V., “The Monge – Kantorovich problem: achievements, connections, and prospects”, Russian Math. Surveys, 67:5 (2012), 785–890 | DOI | MR | Zbl

[9] Bogachev V. I., Malofeev I. I., “Kantorovich problems and conditional measures depending on a parameter”, J. Math. Anal. Appl., 486:1 (2020), 1–30 | DOI | MR | Zbl

[10] Dedecker J., Prieur C., Raynaud De Fitte P., “Parametrized Kantorovich–Rubinštein theorem and application to the coupling of random variables. Dependence in probability and statistics”, Lect. Notes Stat., 187 (2006), 105–121 | DOI | MR | Zbl

[11] Dellacherie C., “Un cours sur les ensembles analytiques”, Analytic sets, Academic Press, New York, 1980, 184–316 | MR

[12] Doledenok A. N., “On a Kantorovich problem with a density constraint”, Math. Notes, 104:1 (2018), 39–47 | DOI | DOI | MR | Zbl

[13] Engelking P., General Topology, Warszawa, Polish Sci. Publ, 1977, 626 pp. | MR | Zbl

[14] Gozlan N., Roberto C., Samson P.-M., Tetali P., “Kantorovich duality for general transport costs and applications”, J. Funct. Anal., 273:11 (2017), 3327–3405 | DOI | MR | Zbl

[15] Korman J., McCann R. J., “Optimal transportation with capacity constraints”, Trans. Amer. Math. Soc., 367:3 (2015), 1501–1521 | DOI | MR | Zbl

[16] Kuksin S., Nersesyan V., Shirikyan A., “Exponential mixing for a class of dissipative PDEs with bounded degenerate noise”, Geom. Funct. Anal. (GAFA), 30:1 (2020), 126–187 | DOI | MR | Zbl

[17] Rachev S. T., Rüschendorf L., Mass Transportation Problems, v. 1, Springer, New York, 1998, 508 pp. ; v. 2, 430 pp. | Zbl

[18] Santambrogio F., Optimal Transport for Applied Mathematicians, Birkhäuser/Springer, Cham, 2015, 353 pp. | DOI | MR | Zbl

[19] Villani C., Optimal Transport, Old and New, Springer, New York, 2009, 973 pp. | DOI | MR | Zbl