Mots-clés : soliton solution
@article{IIGUM_2022_41_a5,
author = {Iroda I. Baltaeva and Ilkham D. Rakhimov and Muzaffar M. Khasanov},
title = {Exact traveling wave solutions of the loaded modified {Korteweg-de} {Vries} equation},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {85--95},
year = {2022},
volume = {41},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2022_41_a5/}
}
TY - JOUR AU - Iroda I. Baltaeva AU - Ilkham D. Rakhimov AU - Muzaffar M. Khasanov TI - Exact traveling wave solutions of the loaded modified Korteweg-de Vries equation JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2022 SP - 85 EP - 95 VL - 41 UR - http://geodesic.mathdoc.fr/item/IIGUM_2022_41_a5/ LA - en ID - IIGUM_2022_41_a5 ER -
%0 Journal Article %A Iroda I. Baltaeva %A Ilkham D. Rakhimov %A Muzaffar M. Khasanov %T Exact traveling wave solutions of the loaded modified Korteweg-de Vries equation %J The Bulletin of Irkutsk State University. Series Mathematics %D 2022 %P 85-95 %V 41 %U http://geodesic.mathdoc.fr/item/IIGUM_2022_41_a5/ %G en %F IIGUM_2022_41_a5
Iroda I. Baltaeva; Ilkham D. Rakhimov; Muzaffar M. Khasanov. Exact traveling wave solutions of the loaded modified Korteweg-de Vries equation. The Bulletin of Irkutsk State University. Series Mathematics, Tome 41 (2022), pp. 85-95. http://geodesic.mathdoc.fr/item/IIGUM_2022_41_a5/
[1] Baltaeva I.I, Feckan M., Urazboev G., “Integration of the loaded KdV equation in the class of “rapidly decreasing” functions”, Conf. Modern methods of mathematical physics and their applications, v. 1, 2020, 116
[2] Baltaeva U., Torres P. J., “Analog of the Gellerstedt problem for a loaded equation of the third order”, Math. Meth. Appl. Sci., 42 (2019), 3865 | DOI | MR | Zbl
[3] Bekir A., “Application of the (G'/G)-expansion method for nonlinear evolution equations”, Phys. Lett. A, 372 (2008), 3400 | DOI | MR | Zbl
[4] Bekir A., Guner O., “Exact solutions of nonlinear fractional differential equations by (G'/G)-expansion method”, Chin. Phys. B, 22 (2013), 110202 | DOI
[5] Cannon J. R., Yin H. M., “On a class of nonlinear nonclassical parabolic problems”, J. Different. Equat., 79 (1989), 266–288 | DOI | MR | Zbl
[6] Chadam J. M., Peirce A., Yin H. M., “The blowup property of solutions to some diffusion equations with localized nonlinear reactions”, J. Math. Analys. and Appl., 169 (1992), 313 | DOI | MR | Zbl
[7] Demiray H., “Variable coefficient modified KdV equation in fluid-filled elastic tubes with stenosis: Solitary waves”, Chaos Soliton Fractals, 42 (2009), 1 | DOI | MR | Zbl
[8] Gardner C., Green J., Kruskal M., Miura R., “A method for solving the Korteweg-de Vries equation”, Phys. Rev. Letters, 19 (1967), 1095 | DOI | MR
[9] Hirota R., “Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons”, Phys. Rev. Lett., 27 (1971), 1192 | DOI | Zbl
[10] Kadomtsev B. B., Karpman V. I., “Nonlinear waves”, Sov. Phys. Usp., 14 (1971), 40 | DOI | MR
[11] Khasanov M., “Integration of the loaded modified Korteweg-de Vries equation in the class of periodic functions”, Uzbek Mathematical Journal, 4 (2016), 139 | MR
[12] Kudryashov N. A., Chernyavskii I. L., “Nonlinear waves in fluid flow through a viscoelastic tube”, Fluid Dynamics, 41 (2006), 1 | DOI | MR | Zbl
[13] Li Z.L., “Constructing of new exact solutions to the GKdV-mKdV equation with any-order nonlinear terms by (G'/G)-expansion method”, Appl. Math. Comput., 217 (2010), 1398 | DOI | MR
[14] Nakhushev A. M., “On nonlocal problems with shift and their connection with loaded equations”, Differents. Uravn., 21 (1985), 92 | MR | Zbl
[15] Reyimberganov A. A., Rakhimov I. D., “The soliton solutions for the nonlinear Schrodinger equation with self-consistent sources”, The Bulletin of Irkutsk State University. Series Mathematics, 36 (2021), 84 | DOI | MR | Zbl
[16] Rogers C., Shadwick W. F., Backlund Transformations, Academic Press, New York, 1982 | MR | Zbl
[17] Shang N., Zheng B., “Exact Solutions for Three Fractional Partial Differential Equations by the (G'/G) Method”, Int. J. Appl. Math., 43 (2013), 114 | MR
[18] Urazboev G. U., Baltaeva I. I., Rakhimov I. D., “A generalized (G'/G)-expansion method for the loaded Korteweg-de Vries equation”, Sibirskii Zhurnal Industrial'noi Matematiki, 24 (2021), 139 (in Russian) | DOI | MR
[19] Wadati M., “The exact solution of the modified Korteweg-de Vries equation”, J. Phys. Soc., 32 (1972), 1681 | DOI | MR
[20] Wadati M., Shanuki H., Konno K., Prog. Theor. Phys., 53 (1975), 419 | DOI | MR | Zbl
[21] Wang M., Li X., Zhang J., “The (G'/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics”, Phys Lett. A, 372 (2008), 417 | DOI | MR | Zbl
[22] Zayed E. M., “The (G'/G)-expansion method and its applications to some nonlinear evolution equations in the mathematical physics”, J. Appl. Math. Comput., 30 (2009), 89 | DOI | MR | Zbl
[23] Zayed E. M., “The (G'/G)-expansion method combined with the Riccati equation for finding exact solutions of nonlinear PDEs”, J. Appl. Math. Inform., 29 (2011), 351 | MR | Zbl
[24] Zayed E. M., Alurr K. A., “Extended generalized (G'/G)-expansion method for solving the nonlinear quantum Zakharov Kuznetsov equation”, Ricerche Mat., 65 (2016), 235 | DOI | MR | Zbl
[25] Zayed E. M.E., “The (G'/G) expansion method and its applications to some nonlinear evolution equations in the mathematical physics”, Journal of Applied Mathematics and Computing, 30 (2009), 89 | DOI | MR | Zbl
[26] Zayed E. M.E., Gepreel K. A., “The (G'/G) expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics”, Journal of Mathematical Physics, 50 (2009), 013502 | DOI | MR
[27] Zhang S., Tong J. L., Wang W., “A generalized (G'/G)-expansion method for the mKdV equation with variable coefcients”, Phys. Lett. A, 372 (2008), 2254 | DOI | Zbl