Mots-clés : inversion formulas.
@article{IIGUM_2022_41_a4,
author = {Ekaterina D. Antipina},
title = {Inversion formulas for the three-dimensional {Volterra} integral equation of the first kind with prehistory},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {69--84},
year = {2022},
volume = {41},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2022_41_a4/}
}
TY - JOUR AU - Ekaterina D. Antipina TI - Inversion formulas for the three-dimensional Volterra integral equation of the first kind with prehistory JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2022 SP - 69 EP - 84 VL - 41 UR - http://geodesic.mathdoc.fr/item/IIGUM_2022_41_a4/ LA - ru ID - IIGUM_2022_41_a4 ER -
%0 Journal Article %A Ekaterina D. Antipina %T Inversion formulas for the three-dimensional Volterra integral equation of the first kind with prehistory %J The Bulletin of Irkutsk State University. Series Mathematics %D 2022 %P 69-84 %V 41 %U http://geodesic.mathdoc.fr/item/IIGUM_2022_41_a4/ %G ru %F IIGUM_2022_41_a4
Ekaterina D. Antipina. Inversion formulas for the three-dimensional Volterra integral equation of the first kind with prehistory. The Bulletin of Irkutsk State University. Series Mathematics, Tome 41 (2022), pp. 69-84. http://geodesic.mathdoc.fr/item/IIGUM_2022_41_a4/
[1] Abas W. M.A., Harutyunyan R. V., “Analysis and optimization of nonlinear systems with memory based on Volterra integro-functional series and Monte-Carlo methods”, Izvestiya Vuzov. Severo-Kavkazskiy Region. Tekhnicheskie Nauki, 2021, no. 3, 30–34 (in Russian) | DOI
[2] Apartsyn A. S., Nonclassical Volterra equations of the first kind: theory and numerical methods, VSP, Boston–Utrecht, 2003, 168 pp. | MR
[3] Apartsyn A. S., Existences and uniqueness' theorems of the solutions of the Volterra equations of the I kind, non-linear dynamic systems connected to identification (scalar case), Preprint No 9, Publ. of SEI SB RAS, Irkutsk, 1995, 30 pp. (in Russian)
[4] Volkodavov V. F., Rodionova I. N., “Inversion formulas for some two-dimensional Volterra integral equations of the first kind”, Russian Math., 42:9 (1998), 28–30 | MR | Zbl
[5] El'sgol'ts L.E., Norkin S. B., Introduction into the theory of differential equations with a deviating argument, Nauka Publ, M., 1971, 296 pp. (in Russian) | MR
[6] Cheng C. M., Peng Z. K., Zhang W. M., Meng G., “Volterra-series-based nonlinear system modeling and its engineering applications: A state-of-the-art review”, Mechanical Systems and Signal Processing, 87 (2017), 340–364 | DOI
[7] Markova E., Sidler I., Solodusha S., “Integral models based on volterra equations with prehistory and their applications in energy”, Mathematics, 9:10 (2021), 1127 | DOI
[8] Solodusha S. V., “Identification of Integral Models of Nonlinear Multi-input Dynamic Systems Using the Product Integration Method”, Stability and Control Processes, SCP 2020, LNCIS - Proceedings, Springer, Cham, 2022, 137–147 | DOI | MR
[9] Volterra V., A theory of functionals, integral and integro-differential equations, Dover Publ, New York, 1959, 288 pp. | MR | Zbl