Approximations of acyclic graphs
The Bulletin of Irkutsk State University. Series Mathematics, Tome 40 (2022), pp. 104-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, approximations of acyclic graphs are studied. It is proved that any theory of an acyclic graph (tree) of finite diameter is pseudofinite with respect to acyclic graphs (trees), that is, any such theory is approximated by theories of finite structures (acyclic graphs, trees). It is also proved that an acyclic graph of infinite diameter with infinite number of rays is pseudofinite.
Keywords: approximation of theory, tree, acyclic graph, pseudofinite theory.
@article{IIGUM_2022_40_a7,
     author = {Nurlan D. Markhabatov},
     title = {Approximations of acyclic graphs},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {104--111},
     year = {2022},
     volume = {40},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2022_40_a7/}
}
TY  - JOUR
AU  - Nurlan D. Markhabatov
TI  - Approximations of acyclic graphs
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2022
SP  - 104
EP  - 111
VL  - 40
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2022_40_a7/
LA  - en
ID  - IIGUM_2022_40_a7
ER  - 
%0 Journal Article
%A Nurlan D. Markhabatov
%T Approximations of acyclic graphs
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2022
%P 104-111
%V 40
%U http://geodesic.mathdoc.fr/item/IIGUM_2022_40_a7/
%G en
%F IIGUM_2022_40_a7
Nurlan D. Markhabatov. Approximations of acyclic graphs. The Bulletin of Irkutsk State University. Series Mathematics, Tome 40 (2022), pp. 104-111. http://geodesic.mathdoc.fr/item/IIGUM_2022_40_a7/

[1] Ax J., “The elementary theory of finite fields”, Ann. Math., 88:2 (1968), 239–271 | DOI | MR | Zbl

[2] Diestel R., Graph theory, Springer, New York–Heidelberg, 2005, 422 pp. | MR | Zbl

[3] Harary F., Graph Theory, Addison-Wesley, 1969, 274 pp. | MR | Zbl

[4] Kulpeshov B.Sh., Sudoplatov S. V., “Ranks and approximations for families of ordered theories”, Collection of papers, Algebra and Model Theory, 12, eds. Pinus A. G., Poroshenko E. N., Sudoplatov S. V., NSTU Publ., Novosibirsk, 2019, 32–40 | MR

[5] Markhabatov N. D., “Pseudofiniteness of locally free algebras”, Collection of papers, Algebra and Model Theory, 12, eds. Pinus A. G., Poroshenko E. N., Sudoplatov S. V., NSTU Publ, Novosibirsk, 2019, 41–46

[6] Markhabatov N. D., “Ranks for Families of Permutation Theories”, The Bulletin of Irkutsk State University. Series Mathematics, 28 (2019), 85–94 | DOI | MR | Zbl

[7] Sudoplatov S. V., “Approximations of theories”, Siberian Electronic Mathematical Reports, 17 (2020), 715–725 | DOI | MR | Zbl

[8] Sudoplatov S. V., Ovchinnikova E. V., Discrete mathematics, Urait Publ, M., 2022, 280 pp. (in Russian)