Mots-clés : direct decomposition
@article{IIGUM_2022_40_a2,
author = {Olesia V. Kamozina},
title = {Boolean lattices of $n$-multiply $\omega\sigma$-fibered fitting classes},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {34--48},
year = {2022},
volume = {40},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2022_40_a2/}
}
TY - JOUR AU - Olesia V. Kamozina TI - Boolean lattices of $n$-multiply $\omega\sigma$-fibered fitting classes JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2022 SP - 34 EP - 48 VL - 40 UR - http://geodesic.mathdoc.fr/item/IIGUM_2022_40_a2/ LA - ru ID - IIGUM_2022_40_a2 ER -
Olesia V. Kamozina. Boolean lattices of $n$-multiply $\omega\sigma$-fibered fitting classes. The Bulletin of Irkutsk State University. Series Mathematics, Tome 40 (2022), pp. 34-48. http://geodesic.mathdoc.fr/item/IIGUM_2022_40_a2/
[1] Birkhoff G., Lattice theory, Science Publ, M., 1984, 568 pp. (in Russian) | MR
[2] Vedernikov V. A., “On new types of $\omega$-fibered Fitting classes of finite groups”, Ukrainian Mathematical Journal, 54:7 (2002), 1086–1097 | DOI | MR | Zbl
[3] Vorob'ev N.N., Algebra of classes of finite groups, VSU im. P.M. Masherova Publ, Vitebsk, 2012, 322 pp. (in Russian)
[4] Vorob'ev N.N., “On the Boolean lattices of $n$-multiply $\omega$-local Fitting classes”, Proceedings of the Gomel State Univ. im. F. Skaryna, 2002, no. 5(14), Questions of Algebra-18, 43–46 (in Russian) | Zbl
[5] Vorob'ev N.N., Skiba A. N., “On the Boolean lattices of $n$-multiply local Fitting classes”, Siberian Math. J., 40:3 (1999), 446–452 | DOI | MR
[6] Vorob'ev N.T., “On the Hawkes conjecture for radical classes”, Siberian Math. J., 37:6 (1996), 1137–1142 | DOI | MR | Zbl
[7] Demina E. N., “The lattices of $n$-multiply $\Omega_1$-foliated $\tau$-closed formations of multioperator $T$-groups”, Discrete Math. Appl., 22:2 (2012), 147–172 | DOI | MR | Zbl
[8] Kamozina O. V., “Satellites and products of $\omega\sigma$-fibered Fitting classes”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 27, no. 1, 2021, 88–97 (in Russian) | DOI | MR
[9] Kamozina O. V., “$\omega\sigma$-fibered Fitting classes”, Chebyshevskii sbornik, 21:4 (2020), 107–116 (in Russian) | DOI | MR | Zbl
[10] Skachkova Yu.A., “Boolean lattices of multiply $\Omega$-foliated formations”, Discrete Math. Appl., 12:5 (2002), 477–482 | DOI | MR | MR | Zbl
[11] Skiba A. N., Algebra of formations, Belaruskaya navuka Publ, Minsk, 1997, 240 pp. (in Russian) | MR
[12] Skiba A. N., “On local formations with complemented local subformations”, Izvestiya vuzov. Matematika, 1994, no. 10, 75–80 (in Russian) | Zbl
[13] Skiba A. N., Shemetkov L. A., “Formations of algebras with complemented subformations”, Ukrainian Mathematical Journal, 43:7–8 (1991), 1008–1012 (in Russian) | DOI
[14] Chi Z., Safonov V. G., Skiba A. N., “On $n$-multiply $\sigma$-local formations of finite groups”, Comm. Algebra, 47:3 (2019), 957–968 | DOI | MR | Zbl
[15] Guo W., Zhang L., Vorob'ev N. T., “On $\sigma$-local Fitting classes”, J. Algebra, 542 (2020), 116–129 | DOI | MR | Zbl
[16] Skiba A. N., “On one generalization of the local formations”, Problemy Fiziki, Matematiki i Tekhniki, 2018, no. 1(34), 79–82 | MR | Zbl