@article{IIGUM_2022_40_a0,
author = {Evgenij K. Leinartas and Tat'jana I. Yakovleva},
title = {Generating function of the solution of a difference equation and the {Newton} polyhedron of the characteristic polynomial},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {3--14},
year = {2022},
volume = {40},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2022_40_a0/}
}
TY - JOUR AU - Evgenij K. Leinartas AU - Tat'jana I. Yakovleva TI - Generating function of the solution of a difference equation and the Newton polyhedron of the characteristic polynomial JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2022 SP - 3 EP - 14 VL - 40 UR - http://geodesic.mathdoc.fr/item/IIGUM_2022_40_a0/ LA - ru ID - IIGUM_2022_40_a0 ER -
%0 Journal Article %A Evgenij K. Leinartas %A Tat'jana I. Yakovleva %T Generating function of the solution of a difference equation and the Newton polyhedron of the characteristic polynomial %J The Bulletin of Irkutsk State University. Series Mathematics %D 2022 %P 3-14 %V 40 %U http://geodesic.mathdoc.fr/item/IIGUM_2022_40_a0/ %G ru %F IIGUM_2022_40_a0
Evgenij K. Leinartas; Tat'jana I. Yakovleva. Generating function of the solution of a difference equation and the Newton polyhedron of the characteristic polynomial. The Bulletin of Irkutsk State University. Series Mathematics, Tome 40 (2022), pp. 3-14. http://geodesic.mathdoc.fr/item/IIGUM_2022_40_a0/
[1] Leinartas E. K., “Multidimensional Hadamard composition and sums with linear constraints on the summation indices”, Sib. Math. J., 30 (1989), 250–255 | DOI | MR | Zbl
[2] Leinartas E. K., “Multiple Laurent series and fundamental solutions of linear difference equations”, Sib. Math. J., 48 (2007), 268–272 | DOI | MR | Zbl
[3] Leinartas E. K., Nekrasova T. I., “Constant coefficient linear difference equations on the rational cones of the integer lattice”, Sib. Math. J., 57 (2016), 74–85 | DOI | DOI | MR | Zbl
[4] Nekrasova T. I., “Sufficient conditions of algebraicity of generating functions of the solutions of multidimensional difference equations”, The Bulletin of Irkutsk State University. Series Mathematics, 6:3 (2013), 88–96 (in Russian) | Zbl
[5] Pochekutov D. Y. Diagonals of the laurent series of rational functions, Sib. Math. J., 50:6 (2009), 1081–1091 | DOI | MR | Zbl
[6] Stanley R., Enumerative combinatorics. Trees, generating functions and symmetric functions, Mir Publ, M., 2009, 767 pp. (in Russian)
[7] Yakovleva T. I., “Well-posedness of the Cauchy problem for multidimensional difference equations in rational cones”, Siberian Mathematical Journal, 58:2 (2017), 363–372 | DOI | DOI | MR | Zbl
[8] Apanovich M. S., Leinartas E. K., “On correctness of Cauchy problem for a polynomial difference operator with constant coefficients”, The Bulletin of Irkutsk State University. Series Mathematics, 26 (2018), 3–15 | DOI | MR | Zbl
[9] Bousquet-Mélou M., Petkovšek M., “Linear recurrences with constant coefficients: the multivariate case”, Discrete Mathematics, 225 (2000), 51–75 | DOI | MR | Zbl
[10] Djokoviĉ D. Ẑ., “A properties of the Taylor expantion of rational function in several variables”, J. of Math. Anal. and Appl., 66 (1978), 679–685 | DOI | MR | Zbl
[11] Haustus M. L. T., Klarner D. A., “The diagonal of a double power series”, Duke Math. J., 38:2 (1971), 229–235 | MR
[12] Leinartas E. K., Yakovleva T. I., “The Cauchy problem for multidimensional difference equations and the preservation of the hierarchy of generating functions of its solutions”, Journal of Siberian Federal University. Mathematics and Physics, 11:6 (2018), 712–722 | DOI | MR | Zbl
[13] Lipshitz L., “D-Finite power series”, Journal of Algebra, 122 (1989), 353–373 | DOI | MR | Zbl
[14] Lyapin A. P., Chandragiri S., “Generating functions for vector partition functions and a basic recurrence relation”, Journal of Difference Equations and Applications, 25:7 (2019), 1052–1061 | DOI | MR | Zbl