Mots-clés : autotopism.
@article{IIGUM_2022_39_a6,
author = {Olga V. Kravtsova},
title = {2-elements in an autotopism group of a semifield projective plane},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {96--110},
year = {2022},
volume = {39},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2022_39_a6/}
}
Olga V. Kravtsova. 2-elements in an autotopism group of a semifield projective plane. The Bulletin of Irkutsk State University. Series Mathematics, Tome 39 (2022), pp. 96-110. http://geodesic.mathdoc.fr/item/IIGUM_2022_39_a6/
[1] Kravtsova O. V., “Semifield planes of even order that admit the Baer involution”, The Bulletin of Irkutsk State University. Series Mathematics, 6:2 (2013), 26–37 (in Russian)
[2] Kravtsova O. V., Sheveleva I. V., “On some 3-primitive projective planes”, Chebyshevskii Sbornik, 20:3 (2019), 187–203 (in Russian) | DOI
[3] Podufalov N. D., Durakov B. K., Kravtsova O. V., Durakov E. B., “On the semifield planes of order $16^2$”, Siberian Mathematical Journal, 37:3 (1996), 616–623 (in Russian)
[4] Dickson L. E., “Linear algebras in which division is always uniquely possible”, Trans. Amer. Math. Soc., 7:3 (1906), 370–390
[5] Hughes D. R., Piper F. C., Projective planes, Springer-Verlag Publ, New-York, 1973, 324 pp.
[6] Kravtsova O. V., “On automorphisms of semifields and semifield planes”, Siberian Electronic Mathematical Reports, 13 (2016), 1300–1313 | DOI
[7] Kravtsova O. V., “Semifield planes of odd order that admit a subgroup of autotopisms isomorphic to $A_4$”, Russian Mathematics, 60:9 (2016), 7–22 | DOI
[8] Kravtsova O. V., “Elementary abelian 2-subgroups in an autotopism group of a semifield projective plane”, The Bulletin of Irkutsk State University. Series Mathematics, 32 (2020), 49–63 | DOI | DOI
[9] Luneburg H., Translation planes, Springer-Verlag Publ, New-York, 1980, 278 pp.
[10] Mazurov V. D., Khukhro E. I. (eds.), Unsolved Problems in Group Theory, The Kourovka Notebook, 19, Sobolev Inst. Math. Publ., Novosibirsk, 2018, 248 pp.
[11] Moorhouse G. E., “$PSL(2,q)$ as a collineation group of projective planes of small orders”, Geom. Dedicata, 31:1 (1989), 63–88
[12] Podufalov N. D., “On spread sets and collineations of projective planes”, Contem. Math., 131:1 (1992), 697–705