Mots-clés : elliptic domains
@article{IIGUM_2022_39_a5,
author = {Zi-Cai Li and Hung-Tsai Huang and Li-Ping Zhang and Anna A. Lempert and Ming-Gong Lee},
title = {Numerical experiments of the dual null field method for {Dirichlet} problems of {Laplace's} equation in elliptic domains with elliptic holes},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {80--95},
year = {2022},
volume = {39},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2022_39_a5/}
}
TY - JOUR AU - Zi-Cai Li AU - Hung-Tsai Huang AU - Li-Ping Zhang AU - Anna A. Lempert AU - Ming-Gong Lee TI - Numerical experiments of the dual null field method for Dirichlet problems of Laplace's equation in elliptic domains with elliptic holes JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2022 SP - 80 EP - 95 VL - 39 UR - http://geodesic.mathdoc.fr/item/IIGUM_2022_39_a5/ LA - en ID - IIGUM_2022_39_a5 ER -
%0 Journal Article %A Zi-Cai Li %A Hung-Tsai Huang %A Li-Ping Zhang %A Anna A. Lempert %A Ming-Gong Lee %T Numerical experiments of the dual null field method for Dirichlet problems of Laplace's equation in elliptic domains with elliptic holes %J The Bulletin of Irkutsk State University. Series Mathematics %D 2022 %P 80-95 %V 39 %U http://geodesic.mathdoc.fr/item/IIGUM_2022_39_a5/ %G en %F IIGUM_2022_39_a5
Zi-Cai Li; Hung-Tsai Huang; Li-Ping Zhang; Anna A. Lempert; Ming-Gong Lee. Numerical experiments of the dual null field method for Dirichlet problems of Laplace's equation in elliptic domains with elliptic holes. The Bulletin of Irkutsk State University. Series Mathematics, Tome 39 (2022), pp. 80-95. http://geodesic.mathdoc.fr/item/IIGUM_2022_39_a5/
[1] Chen J. T., Han H., Kuo S. R., Kao S. K., “Regularization for ill-conditioned systems of integral equation of first kind with logarithmic kernel”, Inverse Problems in Science and Engineering, 22:7 (2014), 1176–1195 | DOI
[2] Chen J. T., Hong H. K., “Review of dual finite element methods with emphasis on hypersingular integrals and divergent series”, Appl. Mech. Rev., 52:1 (1999), 17–33 | DOI
[3] Chen J. T., Lee Y. T., Chang Y. L., Jian J., “A self-regularized approach for rank-deficient systems in the BEM of 2D Laplace problems”, Inverse Problems in Science and Engineering, 25:1 (2017), 89–113 | DOI
[4] Kuo S. R., Kao S. K., Huang Y. L., Chen J. T., “Revisit of the degenerate scale for an infinite plane problem containing two circular holes using conformal mapping”, Applied Mathematics Letters, 92 (2019), 99–107 | DOI
[5] Lee M. G., Li Z.C., Zhang L. P., Huang H. T., Chiang J. Y., “Algorithm singularity of the null-field method for Dirichlet problems of Laplace's equation in annular and circular domains”, Eng. Anal. Bound. Elem., 41 (2014), 160–172 | DOI
[6] Li Z.C., Chiang J. Y., Huang H. T., Lee M. G., “The new interior field method for Laplace's equation on circular domains with circular holes”, Eng. Anal. Bound. Elem., 67 (2016), 173–185 | DOI
[7] Li Z.C., Huang H. T., Wei Y., Cheng A. H.-D., Effective Condition Number for Numerical Partial Differential Equations, Science Press, Beijing, 2014, 286 pp.
[8] Li Z.C., Lu T.T., Hu H.Y., Cheng A. H.-D., Trefftz and Collocation Methods, WIT press, Southampton–Boston, 2008, 432 pp.
[9] Lee M. G., Zhang L. P., Li Z.C., Kazakov A. L., “Dual Null Field Method for Dirichlet Problems of Laplace's Equation in Circular Domains with Circular Holes”, Siberian Electronic Mathematical Reports, 19:1 (2021), 393–422 | DOI
[10] Li Z.C., Huang H. T., Zhang L. P., Lempert A. A., Lee M. G., “Analysis of Dual Null Field Methods for Dirichlet Problems of Laplace's Equation in Circular Domains with Circular Holes: Bypassing the degenerate scales”, The Bulletin of Irkutsk State University. Series Mathematics, 2021 (to appear)
[11] Li Z.C., Zhang L. P., Lee M. G., “Interior field methods for Neumann problems of Laplace's equation in elliptic domains, Comparisons with degenerate scales”, Eng. Anal. Bound. Elem., 71 (2016), 190–202 | DOI
[12] Li Z.C., Zhang L. P., Wei Y., Lee M. G., Chiang J. Y., “Boundary methods for Dirichlet problems of Laplace's equation in elliptic domains with elliptic holes”, Eng. Anal. Bound. Elem., 61 (2015), 92–103 | DOI
[13] Morse P. M., Feshbach H., Methods of Theoretical Physics, McGraw-Hill, Inc., New York, 1953, 997 pp.
[14] Portela A., Aliabadi M. H., Rooke D. P., “The dual boundary element method: effective implementation for crack problems”, Int. J. Numer. Methods Engrg., 33 (1992), 1269–1287 | DOI
[15] Krnić L., “Types of Bases in the Algebra of Logic”, Glasnik Matematicko-Fizicki i Astronomski, series 2, 20 (1965), 23–32
[16] Lau D., Miyakawa M., “Classification and enumerations of bases in $P_k(2)$”, Asian-European Journal of Mathematics, 1:2 (2008), 255–282
[17] Miyakawa M., Rosenberg I., Stojmenović I., “Classification of Three-valued logical functions preserving 0”, Discrete Applied Mathematics, 28 (1990), 231–249 | DOI