About formal normal form of the semi-hyperbolic maps germs on the plane
The Bulletin of Irkutsk State University. Series Mathematics, Tome 38 (2021), pp. 54-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

There are consider the problem of constructing an analytical classification holomorphic resonance maps germs of Siegel-type in dimension 2. Namely, semi-hyperbolic maps of general form: such maps have one parabolic multiplier (equal to one), and the other hyperbolic (not equal in modulus to zero or one). In this paper, the first stage of constructing an analytical classification by the method of functional invariants is carried out: a theorem on the reducibility of a germ to its formal normal form by «semiformal» changes of coordinates is proved. The one-time shift along the saddle-node vector field (the formal normal form in the problem of the analytical classification of saddle-node vector fields on a plane) is chosen as the formal normal form.
Keywords: semi-hyperbolic maps, analytical classification.
Mots-clés : formal classification
@article{IIGUM_2021_38_a3,
     author = {P. A. Shaikhullina},
     title = {About formal normal form of the semi-hyperbolic maps germs on the plane},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {54--64},
     year = {2021},
     volume = {38},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2021_38_a3/}
}
TY  - JOUR
AU  - P. A. Shaikhullina
TI  - About formal normal form of the semi-hyperbolic maps germs on the plane
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2021
SP  - 54
EP  - 64
VL  - 38
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2021_38_a3/
LA  - ru
ID  - IIGUM_2021_38_a3
ER  - 
%0 Journal Article
%A P. A. Shaikhullina
%T About formal normal form of the semi-hyperbolic maps germs on the plane
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2021
%P 54-64
%V 38
%U http://geodesic.mathdoc.fr/item/IIGUM_2021_38_a3/
%G ru
%F IIGUM_2021_38_a3
P. A. Shaikhullina. About formal normal form of the semi-hyperbolic maps germs on the plane. The Bulletin of Irkutsk State University. Series Mathematics, Tome 38 (2021), pp. 54-64. http://geodesic.mathdoc.fr/item/IIGUM_2021_38_a3/

[1] Arnold V. I., “Ordinary differential equations”, Encyclopaedia Math. Sci., 1, 1988, 1–148 | Zbl

[2] Bruno A. D., “Analytical form of differential equations (I)”, Trans. Moscow Math. Soc., 25 (1971), 131–288 | Zbl

[3] Bruno A. D., “Analytical form of differential equations (II)”, Trans. Moscow Math. Soc., 26 (1972), 199–239 | Zbl

[4] Voronin S. M., “Analytic classification of germs of conformal mappings $(\mathbb{C},0)\to(\mathbb{C},0)$ with identity linear part”, Functional Analysis and Its Applications, 15:1 (1981), 1–17 (in Russian) | DOI | Zbl

[5] Voronin S. M., Mescheryakova Yu. I., “Analiticheskaya klassifikatsiya rostkov golomorfnykh vektornykh polei s elementarnoi osoboi tochkoi”, Vestnik ChelGU, 9 (2003), 16–41; Voronin S. M., Mescheryakova Yu.I. Analytic classification of germs of holomorphic vector fields with a degenerate elementary singular point, Izv. Vyssh. Uchebn. Zaved. Mat., 46:1 (2001), 11–14 (in Russian)

[6] Il'yashenko Yu.S., Yakovenko S.Yu., Lectures of analytic differential equations, MTCNMO Publ, M., 2007, 428 pp. (in Russian)

[7] Shaikhullina P. A., “Formal classification of the typical semi-hyperbolic maps germs”, Matematicheskie zametki SVFU, 22:4 (2015), 79–90 (in Russian) | Zbl

[8] Shaikhullina P. A., Analytical classification of the simplest semi-hyperbolic maps germs, PhD thesis, Vladimir, 2020 (in Russian)

[9] Birkhoff G. D., Collected mathematical papers, v. 1, Amer. Math. Soc., N. Y., 1950, 754 pp.

[10] Ecalle J., Sur les fonctions resurgentes, Universite de Paris-Sud, Departement de Mathematique, Orsay, France, 1981

[11] Martinet J., Ramis J. P., “Problème de modules pour des équations différentielles non linéaires du premier ordre”, Inst. Hautes études Sci. Publ. Math., 55, 1982, 63–164 | DOI | Zbl

[12] Martinet J., Ramis J. P., “Classification analytique des équations différentielles non linéaires resonnantes du premier ordre”, Ann. Sci. École norm. supér., 16:4 (1983), 571–621 | DOI | Zbl

[13] Tessier L., “Analytical classification of singular saddle-node vector field”, J. of Dynamical and Control Systems, 10:4 (2004), 577–605 | DOI

[14] Ueda T., “Local structure of analytic transformations of two complex variables, I”, I. J. Math. Kyoto Univ., 26:2 (1986), 233–261 | Zbl

[15] Ueda T., “Local structure of analytic transformations of two complex variables, II”, I. J. Math. Kyoto Univ., 31:3 (1991), 695–711 | Zbl