Linear inverse problems for multi-term equations with Riemann — Liouville derivatives
The Bulletin of Irkutsk State University. Series Mathematics, Tome 38 (2021), pp. 36-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The issues of well-posedness of linear inverse coefficient problems for multi-term equations in Banach spaces with fractional Riemann – Liouville derivatives and with bounded operators at them are considered. Well-posedness criteria are obtained both for the equation resolved with respect to the highest fractional derivative, and in the case of a degenerate operator at the highest derivative in the equation. Two essentially different cases are investigated in the degenerate problem: when the fractional part of the order of the second-oldest derivative is equal to or different from the fractional part of the order of the highest fractional derivative. Abstract results are applied in the study of inverse problems for partial differential equations with polynomials from a self-adjoint elliptic differential operator with respect to spatial variables and with Riemann – Liouville derivatives in time.
Keywords: inverse problem, Riemann – Liouville fractional derivative, degenerate evolution equation, initial-boundary value problem.
@article{IIGUM_2021_38_a2,
     author = {M. M. Turov and V. E. Fedorov and B. T. Kien},
     title = {Linear inverse problems for multi-term equations with {Riemann~{\textemdash}} {Liouville} derivatives},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {36--53},
     year = {2021},
     volume = {38},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2021_38_a2/}
}
TY  - JOUR
AU  - M. M. Turov
AU  - V. E. Fedorov
AU  - B. T. Kien
TI  - Linear inverse problems for multi-term equations with Riemann — Liouville derivatives
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2021
SP  - 36
EP  - 53
VL  - 38
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2021_38_a2/
LA  - en
ID  - IIGUM_2021_38_a2
ER  - 
%0 Journal Article
%A M. M. Turov
%A V. E. Fedorov
%A B. T. Kien
%T Linear inverse problems for multi-term equations with Riemann — Liouville derivatives
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2021
%P 36-53
%V 38
%U http://geodesic.mathdoc.fr/item/IIGUM_2021_38_a2/
%G en
%F IIGUM_2021_38_a2
M. M. Turov; V. E. Fedorov; B. T. Kien. Linear inverse problems for multi-term equations with Riemann — Liouville derivatives. The Bulletin of Irkutsk State University. Series Mathematics, Tome 38 (2021), pp. 36-53. http://geodesic.mathdoc.fr/item/IIGUM_2021_38_a2/

[1] Glushak A. V., “On an Inverse Problem for an Abstract Differential Equation of Fractional Order”, Mathematical Notes, 87:5 (2010), 654–662 | DOI | DOI | Zbl

[2] Nakhushev A. M., Fractional calculus and its applications, Fizmalit Publ, M., 2003, 272 pp. (in Russian)

[3] Pskhu A. V., “Initial-value problem for a linear ordinary differential equation of noninteger order”, Sbornik Mathematics, 202:4 (2011), 571–582 | DOI | DOI | Zbl

[4] Pyatkov S. G., “Boundary Value and Inverse Problems for Some Classes of Nonclassical Operator-Differential Equations”, Siberian Mathematical Journal, 62:3 (2021), 489–502 | DOI | DOI | Zbl

[5] Tikhonov I. V., Eidelman Yu.S., “Problems on correctness of ordinary and inverse problems for evolutionary equations of a special form”, Mathematical Notes, 56:2 (1994), 830–839 | DOI | Zbl

[6] Triebel H., Interpolation Theory. Function Spaces. Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978, 531 pp.

[7] Falaleev M. V., “Degenerated abstract problem of prediction-control in Banach spaces”, The Bulletin of Irkutsk State University. Series Mathematics, 3 (2010), 126–132 (in Russian) | Zbl

[8] Fedorov V. E., Nagumanova A. V., “Inverse Problem for Evolutionary Equation with the Gerasimov – Caputo Fractional Derivative in the Sectorial Case”, The Bulletin of Irkutsk State University. Series Mathematics, 28 (2019), 123–137 (in Russian) | DOI | Zbl

[9] Fedorov V. E., Kostić M., “Identification Problem for Strongly Degenerate Evolution Equations with the Gerasimov – Caputo Derivative”, Differential Equations, 56 (2020), 1613–1627 | DOI | DOI | Zbl

[10] Fedorov V. E., Turov M. M., “The Defect of a Cauchy Type Problem for Linear Equations with Several Riemann – Liouville Derivatives”, Siberian Mathematical Journal, 62:5 (2021), 925–942 | DOI | Zbl

[11] Al Horani M., Favini A., “Degenerate first-order inverse problems in Banach spaces”, Nonlinear Analysis, 75:1 (2012), 68–77 | DOI | Zbl

[12] Fedorov V. E., Ivanova N. D., “Identification problem for degenerate evolution equations of fractional order”, Fractional Calculus and Applied Analysis, 20:3 (2017), 706–721 | DOI | Zbl

[13] Fedorov V. E., Nagumanova A. V., Avilovich A. S., “A class of inverse problems for evolution equations with the Riemann – Liouville derivative in the sectorial case”, Mathematical Methods in the Applied Sciences, 44:15 (2021), 11961–11969 | DOI | Zbl

[14] Fedorov V. E., Nagumanova A. V., Kostić M., “A class of inverse problems for fractional order degenerate evolution equations”, Journal of Inverse and Ill-Posed Problems, 29:2 (2021), 173–184 | DOI | Zbl

[15] Hadid S. B., Luchko Yu.F., “An operational method for solving fractional differential equations of an arbitrary real order”, Panamerican Mathematical Journal, 6:1 (1996), 57–73 | Zbl

[16] Jiang H., Liu F., Turner I., Burrage K., “Analitical solutions for the multi-term time-space Caputo – Riesz fractional advection-diffussion equations on a finite domain”, Journal of Mathematical Analysis and Applications, 389:2 (2012), 1117–1127 | DOI | Zbl

[17] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier Science Publ, Amsterdam–Boston–Heidelberg, 2006, 540 pp. | Zbl

[18] Li C.-G., Kostić M., Li M., “Abstract multi-term fractional differential equations”, Kragujevac Journal of Mathematics, 38:1 (2014), 51–71 | DOI | Zbl

[19] Fedorov V. E., Kostić M., “On a class of abstract degenerate multi-term fractional differential equations in locally convex spaces”, Eurasian Mathematical Journal, 9:3 (2018), 33–57 | DOI | Zbl

[20] Orlovsky D. G., “Parameter determination in a differential equation of fractional order with Riemann – Liouville fractional derivative in a Hilbert space”, Journal of Siberian Federal University. Mathematics Physics, 8:1 (2015), 55–63 | DOI | Zbl

[21] Prilepko A. I., Orlovskii D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker Inc, New York–Basel, 2000, 744 pp. | Zbl

[22] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, 216 pp. | Zbl