@article{IIGUM_2021_38_a2,
author = {M. M. Turov and V. E. Fedorov and B. T. Kien},
title = {Linear inverse problems for multi-term equations with {Riemann~{\textemdash}} {Liouville} derivatives},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {36--53},
year = {2021},
volume = {38},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2021_38_a2/}
}
TY - JOUR AU - M. M. Turov AU - V. E. Fedorov AU - B. T. Kien TI - Linear inverse problems for multi-term equations with Riemann — Liouville derivatives JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2021 SP - 36 EP - 53 VL - 38 UR - http://geodesic.mathdoc.fr/item/IIGUM_2021_38_a2/ LA - en ID - IIGUM_2021_38_a2 ER -
%0 Journal Article %A M. M. Turov %A V. E. Fedorov %A B. T. Kien %T Linear inverse problems for multi-term equations with Riemann — Liouville derivatives %J The Bulletin of Irkutsk State University. Series Mathematics %D 2021 %P 36-53 %V 38 %U http://geodesic.mathdoc.fr/item/IIGUM_2021_38_a2/ %G en %F IIGUM_2021_38_a2
M. M. Turov; V. E. Fedorov; B. T. Kien. Linear inverse problems for multi-term equations with Riemann — Liouville derivatives. The Bulletin of Irkutsk State University. Series Mathematics, Tome 38 (2021), pp. 36-53. http://geodesic.mathdoc.fr/item/IIGUM_2021_38_a2/
[1] Glushak A. V., “On an Inverse Problem for an Abstract Differential Equation of Fractional Order”, Mathematical Notes, 87:5 (2010), 654–662 | DOI | DOI | Zbl
[2] Nakhushev A. M., Fractional calculus and its applications, Fizmalit Publ, M., 2003, 272 pp. (in Russian)
[3] Pskhu A. V., “Initial-value problem for a linear ordinary differential equation of noninteger order”, Sbornik Mathematics, 202:4 (2011), 571–582 | DOI | DOI | Zbl
[4] Pyatkov S. G., “Boundary Value and Inverse Problems for Some Classes of Nonclassical Operator-Differential Equations”, Siberian Mathematical Journal, 62:3 (2021), 489–502 | DOI | DOI | Zbl
[5] Tikhonov I. V., Eidelman Yu.S., “Problems on correctness of ordinary and inverse problems for evolutionary equations of a special form”, Mathematical Notes, 56:2 (1994), 830–839 | DOI | Zbl
[6] Triebel H., Interpolation Theory. Function Spaces. Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978, 531 pp.
[7] Falaleev M. V., “Degenerated abstract problem of prediction-control in Banach spaces”, The Bulletin of Irkutsk State University. Series Mathematics, 3 (2010), 126–132 (in Russian) | Zbl
[8] Fedorov V. E., Nagumanova A. V., “Inverse Problem for Evolutionary Equation with the Gerasimov – Caputo Fractional Derivative in the Sectorial Case”, The Bulletin of Irkutsk State University. Series Mathematics, 28 (2019), 123–137 (in Russian) | DOI | Zbl
[9] Fedorov V. E., Kostić M., “Identification Problem for Strongly Degenerate Evolution Equations with the Gerasimov – Caputo Derivative”, Differential Equations, 56 (2020), 1613–1627 | DOI | DOI | Zbl
[10] Fedorov V. E., Turov M. M., “The Defect of a Cauchy Type Problem for Linear Equations with Several Riemann – Liouville Derivatives”, Siberian Mathematical Journal, 62:5 (2021), 925–942 | DOI | Zbl
[11] Al Horani M., Favini A., “Degenerate first-order inverse problems in Banach spaces”, Nonlinear Analysis, 75:1 (2012), 68–77 | DOI | Zbl
[12] Fedorov V. E., Ivanova N. D., “Identification problem for degenerate evolution equations of fractional order”, Fractional Calculus and Applied Analysis, 20:3 (2017), 706–721 | DOI | Zbl
[13] Fedorov V. E., Nagumanova A. V., Avilovich A. S., “A class of inverse problems for evolution equations with the Riemann – Liouville derivative in the sectorial case”, Mathematical Methods in the Applied Sciences, 44:15 (2021), 11961–11969 | DOI | Zbl
[14] Fedorov V. E., Nagumanova A. V., Kostić M., “A class of inverse problems for fractional order degenerate evolution equations”, Journal of Inverse and Ill-Posed Problems, 29:2 (2021), 173–184 | DOI | Zbl
[15] Hadid S. B., Luchko Yu.F., “An operational method for solving fractional differential equations of an arbitrary real order”, Panamerican Mathematical Journal, 6:1 (1996), 57–73 | Zbl
[16] Jiang H., Liu F., Turner I., Burrage K., “Analitical solutions for the multi-term time-space Caputo – Riesz fractional advection-diffussion equations on a finite domain”, Journal of Mathematical Analysis and Applications, 389:2 (2012), 1117–1127 | DOI | Zbl
[17] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier Science Publ, Amsterdam–Boston–Heidelberg, 2006, 540 pp. | Zbl
[18] Li C.-G., Kostić M., Li M., “Abstract multi-term fractional differential equations”, Kragujevac Journal of Mathematics, 38:1 (2014), 51–71 | DOI | Zbl
[19] Fedorov V. E., Kostić M., “On a class of abstract degenerate multi-term fractional differential equations in locally convex spaces”, Eurasian Mathematical Journal, 9:3 (2018), 33–57 | DOI | Zbl
[20] Orlovsky D. G., “Parameter determination in a differential equation of fractional order with Riemann – Liouville fractional derivative in a Hilbert space”, Journal of Siberian Federal University. Mathematics Physics, 8:1 (2015), 55–63 | DOI | Zbl
[21] Prilepko A. I., Orlovskii D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker Inc, New York–Basel, 2000, 744 pp. | Zbl
[22] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, 216 pp. | Zbl