On integration of the loaded mKdV equation in the class of rapidly decreasing functions
The Bulletin of Irkutsk State University. Series Mathematics, Tome 38 (2021), pp. 19-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the integration of the loaded modified Korteweg-de Vries equation in the class of rapidly decreasing functions. It is well known that loaded differential equations in the literature are usually called equations containing in the coefficients or in the right-hand side any functionals of the solution, in particular, the values of the solution or its derivatives on manifolds of lower dimension. In this paper, we consider the Cauchy problem for the loaded modified Korteweg-de Vries equation. The problem is solved using the inverse scattering method, i.e. the evolution of the scattering data of a non-self-adjoint Dirac operator is derived, the potential of which is a solution to the loaded modified Korteweg-de Vries equation in the class of rapidly decreasing functions. A specific example is given to illustrate the application of the results obtained.
Keywords: loaded modified Korteweg-de Vries equation, inverse scattering problem, Gelfand-Levitan-Marchenko integral equation, evolution of scattering data.
Mots-clés : Jost solutions
@article{IIGUM_2021_38_a1,
     author = {A. B. Khasanov and U. A. Hoitmetov},
     title = {On integration of the loaded {mKdV} equation in the class of rapidly decreasing functions},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {19--35},
     year = {2021},
     volume = {38},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2021_38_a1/}
}
TY  - JOUR
AU  - A. B. Khasanov
AU  - U. A. Hoitmetov
TI  - On integration of the loaded mKdV equation in the class of rapidly decreasing functions
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2021
SP  - 19
EP  - 35
VL  - 38
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2021_38_a1/
LA  - en
ID  - IIGUM_2021_38_a1
ER  - 
%0 Journal Article
%A A. B. Khasanov
%A U. A. Hoitmetov
%T On integration of the loaded mKdV equation in the class of rapidly decreasing functions
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2021
%P 19-35
%V 38
%U http://geodesic.mathdoc.fr/item/IIGUM_2021_38_a1/
%G en
%F IIGUM_2021_38_a1
A. B. Khasanov; U. A. Hoitmetov. On integration of the loaded mKdV equation in the class of rapidly decreasing functions. The Bulletin of Irkutsk State University. Series Mathematics, Tome 38 (2021), pp. 19-35. http://geodesic.mathdoc.fr/item/IIGUM_2021_38_a1/

[1] Ablowitz M. J., Segur H., Solitons and the inverse scattering transform, SIAM, Philadelphia, 1981, 425 pp. | Zbl

[2] Blashchak V. A., “An Analog of the Inverse Problem in the Theory of Scattering for a Non-Selfconjugate Operator. I”, Differencialnye Uravneniya, 4:8 (1968), 1519–1533 (in Russian)

[3] Demontis F., “Exact solutions of the modified Korteweg-de Vries equation”, Teoreticheskaya i Matematicheskaya Fizika, 168:1 (2011), 886–897 | DOI

[4] Dodd R. K. Eilbeck J. C., Gibbon J. D., Morris H. C., Solitons and Nonlinear Wave Equations, Academic Press, London et al., 1982, 630 pp. | Zbl

[5] Zakharov V. E., Takhtadzhyan L. A., Faddeev L. D., “Complete description of solutions of the "sine-Gordon" equation”, Sov. Phys. Dokl., 19:6 (1974), 824–826 | Zbl

[6] Zakharov V. E., Shabat A. B., “Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media”, Sov. Phys. JETP, 34:1 (1972), 62–69

[7] Kozhanov A. I., “Nonlinear loaded equations and inverse problems”, Comput. Math. Math. Phys., 44:4 (2004), 657–675 | Zbl

[8] Mamedov K. A., “On integration of the modified Korteweg-de Vries equation with a source of integral type”, Doklady Akademii Nauk RUz, 2006, no. 2, 24–28 (in Russian)

[9] Nakhushev A. M., “Loaded equations and their applications”, Diff. Urav., 19:1 (1983), 86–94 (in Russian) | Zbl

[10] Nakhushev A. M., Equations of Mathematical Biology, Vysshaya Shkola Publ, M., 1995, 304 pp. (in Russian)

[11] Urazboev G. U., “On modified KdV equation with a self-consistent source corresponding to multiple eigenvalues”, Doklady Akademii Nauk RUz, 2005, no. 5, 11–14 (in Russian)

[12] Urazboev G. U., Xoitmetov U. A., Babadjanova A. K., “Integration of the matrix modified Korteweg-de Vries equation with an integral-type source”, Teoreticheskaya i Matematicheskaya Fizika, 203:3 (2020), 734–746 | DOI | Zbl

[13] Frolov I. S., “Inverse scattering problem for a Dirac system on the whole axis”, Doklady Akademii Nauk SSSR, 13 (1972), 1468–1472 (in Russian) | Zbl

[14] Khasanov A. B., “An inverse problem in scattering theory for a system of two first-order nonselfadjoint differential equations”, Doklady Akademii Nauk SSSR, 277:3 (1984), 559–562 (in Russian) | Zbl

[15] Khasanov A. B., Urazboev G. U., “Method for solving the mKdV equation with a self-consistent source”, Uzbek Math. journal, 2003, no. 1, 69–75 (in Russian)

[16] Khasanov A. B., Hoitmetov U. A., “Integration of the Korteweg-de Vries equation with a loaded term in the class of rapidly decreasing functions”, Doklady Akademii Nauk RUz, 2021, no. 1, 13–18 (in Russian)

[17] Ablowitz M. J., Kaup D. J., Newell A. C., Segur H., “The Inverse Scattering Transform – Fourier Analysis for Nonlinear Problems”, Studies in Applied Mathematics, 53:4 (1974), 249–315 | DOI | Zbl

[18] Chen X., Zhang Y., Liang J., Wang R., “The $N$-soliton solutions for the matrix modified Korteweg-de Vries equation via the Riemann-Hilbert approach”, Eur. Phys. J. Plus, 135 (2020), 574 | DOI

[19] Gardner C. S., Greene I. M., Kruskal M. D., Miura R. M., “Method for Solving the Korteweg-de Vries Equation”, Phys. Rev. Lett., 1967, no. 19, 1095–1097 | DOI

[20] Hoitmetov U. A., “Integration of the loaded Korteweg-de Vries equation in the class of rapidly decreasing complex-valued functions”, Uzbek Math. Journal, 2020, no. 4, 44–52 | DOI | Zbl

[21] Khater A. H., El-Kalaawy O. H., Callebaut D. K., “Backlund Transformations and Exact Solutions for Alfven Solitons in a Relativistic Electron-Positron Plasma”, Physica Scripta, 58:6 (1998), 545–548 | DOI

[22] Kundu A., Sahadevan R., Nalinidevi L., “Nonholonomic deformation of KdV and mKdV equations and their symmetries, hierarchies and integrability”, J. Phys. A: Math. Theor., 42:11 (2009), 115213 | DOI | Zbl

[23] Lax P. D., “Integrals of Nonlinear Equations of Evolution and Solitary Waves”, Comm. Pure and Appl. Math., 21:5 (1968), 467–490 | DOI | Zbl

[24] Mamedov K. A., “Integration of mKdV Equation with a Self-Consistent Source in the Class of Finite Density Functions in the Case of Moving Eigenvalues”, Russian Mathematics, 64 (2020), 66–78 | DOI | Zbl

[25] Matsutani S., Tsuru H., “Reflectionless Quantum Wire”, Journal of the Physical Society of Japan, 60:11 (1991), 3640–3644 | DOI

[26] Sasa N., Satsuma J., “New-type of soliton solutions for a higher-order nonlinear Schrodinger equation”, Journal of the Physical Society of Japan, 60:2 (1991), 409–417 | DOI | Zbl

[27] Schief W., “An infinite hierarchy of symmetries associated with hyperbolic surfaces”, Nonlinearity, 8:1 (1995), 1–9 | DOI | Zbl

[28] Tian S. F., “Initial-boundary value problems of the coupled modified Kortewegde Vries equation on the half-line via the Fokas method”, J. Phys. A: Math. Theo., 50:39 (2017), 395204 | DOI | Zbl

[29] Urazboev G. U., Babadjanova A. K., “On the Integration of the Matrix Modified Korteweg-de Vries Equation with a Self-Consistent Source”, Tamkang Journal of Mathematics, 50:3 (2019), 281–291 | DOI | Zbl

[30] Wadati M., “The exact solution of the modified Korteweg-de Vries equation”, Journal of the Physical Society of Japan, 32 (1972), 1681 | DOI

[31] Wu J., Geng X., “Inverse scattering transform and soliton classification of the coupled modified Korteweg-de Vries equation”, Communications in Nonlinear Science and Numerical Simulation, 53 (2017), 83–93 | DOI | Zbl

[32] Yajima N., Oikawa M., “A class of exactly solvable nonlinear evolution equations”, Pro. Theo. Phys., 54:5 (1975), 1576–1577 | DOI | Zbl

[33] Zhang D.-J., Wu H., “Scattering of Solitons of Modified KdV Equation with Self-consistent Sources”, Commun. Theor. Phys., 49:4 (2008), 809–814 | DOI | Zbl

[34] Zhang G., Yan Z., “Focusing and defocusing mKdV equations with nonzero boundary conditions: Inverse scattering transforms and soliton interactions”, Physica D: Nonlinear Phenomena, 410 (2020), 132521 | DOI