@article{IIGUM_2021_38_a0,
author = {B. A. Babajanov and M. M. Ruzmetov},
title = {On the construction and integration of a hierarchy for the periodic {Toda} lattice with a self-consistent source},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {3--18},
year = {2021},
volume = {38},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2021_38_a0/}
}
TY - JOUR AU - B. A. Babajanov AU - M. M. Ruzmetov TI - On the construction and integration of a hierarchy for the periodic Toda lattice with a self-consistent source JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2021 SP - 3 EP - 18 VL - 38 UR - http://geodesic.mathdoc.fr/item/IIGUM_2021_38_a0/ LA - en ID - IIGUM_2021_38_a0 ER -
%0 Journal Article %A B. A. Babajanov %A M. M. Ruzmetov %T On the construction and integration of a hierarchy for the periodic Toda lattice with a self-consistent source %J The Bulletin of Irkutsk State University. Series Mathematics %D 2021 %P 3-18 %V 38 %U http://geodesic.mathdoc.fr/item/IIGUM_2021_38_a0/ %G en %F IIGUM_2021_38_a0
B. A. Babajanov; M. M. Ruzmetov. On the construction and integration of a hierarchy for the periodic Toda lattice with a self-consistent source. The Bulletin of Irkutsk State University. Series Mathematics, Tome 38 (2021), pp. 3-18. http://geodesic.mathdoc.fr/item/IIGUM_2021_38_a0/
[1] Babajanov B. A., Feckan M., Urazbaev G. U., “On the periodic Toda Lattice hierarchy with an integral source”, Commun. Sci. Numer. Simul., 52 (2017), 110–123 | DOI | Zbl
[2] Babajanov B. A., Feckan M., Urazbaev G. U., “On the periodic Toda Lattice with self-consistent source”, Commun. Sci. Numer. Simul., 22 (2015), 379–388 | DOI
[3] Babajanov B. A., “Integration of the Toda-Type Chain with a special self-consistent source”, Algebra, complex analysis and pluripotential theory, v. 4, Springer, 2018, 1–13 | DOI
[4] Babajanov B. A., Khasanov A. B., “Periodic Toda chain an integral source”, Theoret. and Math. Phys., 184 (2015), 1114–1128 | DOI | Zbl
[5] Bulla W., Gesztesy F., Holden H., Teschl G., “Algebro-Geometric Quasi-Periodic Finite-Gap Solutions of the Toda and Kac-van Moerbeke Hierarchies”, Memoirs of the Amer. Math. Soc., 1998, 135–641 | DOI
[6] Cabada A., Urazboev G. U., “Integration of the Toda lattice with an integral-type source”, Inverse Problems, 26 (2010), 085004 | DOI | Zbl
[7] Claude C., Latifi A., Leon J., “Nonliear resonant scattering and plasma instability: an integrable model”, J. Math. Phys., 32 (1991), 3321–3330 | DOI | Zbl
[8] Chvartatskyi O., Dimakis A., Muller-Hoissen F., “Self-Consistent Sources for Integrable Equations Via Deformations of Binary Darboux Transformations”, Lett. Math. Phys., 106 (2016), 1139–1179 | DOI | Zbl
[9] Date E., Tanaka S., “Analog of inverse scattering theory for discrete Hill's equation and exact solutions for the periodic Toda lattice”, Progress Theor. Physics, 55 (1976), 217–222 | DOI
[10] David C., Niels G. J., Bishop A. R., Findikoglu A. T., Reago D., “A perturbed Toda lattice model for low loss nonlinear transmission lines”, Phys. D: Nonlinear Phenom., 123 (1998), 291–300 | DOI
[11] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nonlinear equations of Korteweg-de Vries type, finite-zone linear operators, and Abelian varieties”, Uspekhi Mat. Nauk, 31:1 (1976), 55–136 | DOI | Zbl
[12] Flaschka H., “On the Toda lattice. II”, Progress Theor. Physics, 51 (1974), 703–716 | DOI | Zbl
[13] Garnier J., Abdullaev F.Kh., “Soliton dynamics in a random Toda chain”, Phys. Rev. E, 67 (2003), 026609, 1 pp. | DOI
[14] Grinevich P. G., Taimanov I. A., “Spectral conservation laws for periodic nonlinear equations of the Melnikov type”, Amer. Math. Soc. Transl. Ser. 2, 224 (2008), 125–138 | Zbl
[15] Hochstadt H., “On the theory of Hill's matrices and related inverse spectral problems”, Linear Algebra Appl., 11 (1975), 41–52 | DOI | Zbl
[16] Hurwitz A., Courant R., Vorlesungen uber allgemeine Funktionentheorie und elliptische Funktionen, Springer, Berlin, 1964 | Zbl
[17] Kac M., van Moerbeke P., “A complete solution of the periodic Toda problem”, Proc. Nat. Acad. Sci. USA, 72 (1975), 1627–1629 | DOI | Zbl
[18] Krichever I. M., “Algebraic curves and non-linear difference equations”, Uspekhi Mat. Nauk, 33:4 (1978), 215–216 | DOI | Zbl
[19] Leon J., Latifi A., “Solution of an initial-boundary value problem for coupled nonlinear waves”, J. Phys.A. Math. Gen., 23 (1990), 1385–403 | DOI
[20] Lin R., Du Y., “Generalized Darboux Transformation for the Discrete Kadomtsev-Petviashvili Equation with Self-Consistent Sources”, Theor. Math. Phys., 196 (2018), 1320–133 | DOI
[21] Liu X., Zeng Y., “On the Toda lattice equation with self-consistent sources”, J. Phys. A: Math. Gen., 38 (2005), 8951–8965 | DOI | Zbl
[22] Lou S. Y., Tang X. Y., Method of Nonlinear Mathematical Physics, Science Press, Beijing, 2006
[23] Mel`nikov V. K., “Integration of the Korteweg-de Vries equation with a source”, Inverse Problems, 6 (1990), 233–246 | DOI | Zbl
[24] Mel'nikov V. K., “A direct method for deriving a multisoliton solution for the problem of interaction of waves on the x,y plane”, Commun. Math. Phys., 112 (1987), 639–52 | DOI
[25] Mel'nikov V. K., “Integration of the nonlinear Schroedinger equation with a self-consistent source”, Commun. Math. Phys., 137 (1991), 359–381 | DOI
[26] Muto V., Scott A. C., Christiansen P. L., “Thermally generated solitons in a Toda lattice model of DNA”, Physics Letters A, 136 (1989), 33–36 | DOI
[27] Reyimberganov A. A., Rakhimov I. D., “The Soliton Solutions for the Nonlinear Schrodinger Equation with Self-consistent Sources”, The Bulletin of Irkutsk State University. Series Mathematics, 35 (2021), 84–94 | DOI
[28] Shchesnovich V. S., Doktorov E. V., “Modified Manakov system with self-consistent source”, Phys. Lett. A, 213 (1996), 23–31 | DOI | Zbl
[29] Toda M., “Waves in nonlinear lattice. Suppl”, Progress Theor. Physics, 45 (1970), 74–200 | DOI
[30] Urazboev G. U., “Toda lattice with a special self-consistent source”, Theoret. and Math. Phys., 154 (2008), 305–315 | DOI | Zbl
[31] Urazboev G., “Integrating the Toda Lattice with Self-Consistent Source via Inverse Scattering Method”, Math. Phys. Anal. Geom., 15 (2012), 401–412 | DOI | Zbl
[32] Yakhshimuratov A. B., Babajanov B. A., “Integration of equations of Kaup system kind with self-consistent source in class of periodic functions”, Ufa Mathematical Journal, 12 (2020), 103–113 | DOI | Zbl