On distributions of trigonometric polynomials in Gaussian random variables
The Bulletin of Irkutsk State University. Series Mathematics, Tome 37 (2021), pp. 77-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove new results about the inclusion of distributions of trigonometric polynomials in Gaussian random variables to Nikolskii–Besov classes. In addition, we estimate the total variance distances between distributions of trigonometric polynomials via the $L^q$-distances between the polynomials themselves.
Keywords: Gaussian measure, distribution of a trigonometric polynomial.
Mots-clés : Nikolskii–-Besov class
@article{IIGUM_2021_37_a5,
     author = {G. I. Zelenov},
     title = {On distributions of trigonometric polynomials in {Gaussian} random variables},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {77--92},
     year = {2021},
     volume = {37},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2021_37_a5/}
}
TY  - JOUR
AU  - G. I. Zelenov
TI  - On distributions of trigonometric polynomials in Gaussian random variables
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2021
SP  - 77
EP  - 92
VL  - 37
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2021_37_a5/
LA  - en
ID  - IIGUM_2021_37_a5
ER  - 
%0 Journal Article
%A G. I. Zelenov
%T On distributions of trigonometric polynomials in Gaussian random variables
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2021
%P 77-92
%V 37
%U http://geodesic.mathdoc.fr/item/IIGUM_2021_37_a5/
%G en
%F IIGUM_2021_37_a5
G. I. Zelenov. On distributions of trigonometric polynomials in Gaussian random variables. The Bulletin of Irkutsk State University. Series Mathematics, Tome 37 (2021), pp. 77-92. http://geodesic.mathdoc.fr/item/IIGUM_2021_37_a5/

[1] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, v. 1, 2, 2-e izd., Nauka, M., 1996, 480 pp.; Besov O. V., Il'in V.P., Nikol'ski{ĭ} S.M., Integral representations of functions and imbedding theorems, v. I, V. H. Winston Sons, Washington, 1978, viii+345 pp. ; v. II, Halsted Press [John Wiley Sons], New York–Toronto, 1979, viii+311 pp. | Zbl

[2] Bogachev V. I., Differentiable measures and the Malliavin calculus, Amer. Math. Soc., Rhode Island, Providence, 2010, 510 pp. | Zbl

[3] Bogachev V. I., “Distributions of polynomials on multidimensional and infinite-dimensional spaces with measures”, Russian Math. Surveys, 71:4 (2016), 703–749 | DOI | Zbl

[4] Bogachev V. I., “Distributions of polynomials in many variables and Nikolskii-Besov spaces”, Real Anal. Exchange, 44:1 (2019), 49–63 | DOI

[5] Bogachev V. I., Kosov E. D., Popova S. N., “A new approach to Nikolskii–Besov classes”, Moscow Math. J., 19:4 (2019), 619–654 | DOI | Zbl

[6] Bogachev V., Kosov E., Zelenov G., “Fractional smoothness of distributions of polynomials and a fractional analog of the Hardy–Landau–Littlewood inequality”, Trans. Amer. Math. Soc., 370:6 (2018), 4401–4432 | DOI | Zbl

[7] Bogachev V. I., Zelenov G. I., Kosov E. D., “Membership of distributions of polynomials in the Nikolskii–Besov class”, Dokl. Math., 94:2 (2016), 453–457 | DOI | Zbl

[8] Carbery A., Wright J., “Distributional and $L^q$ norm inequalities for polynomials over convex bodies in $\mathbb R^n$”, Math. Research Letters, 8:3 (2001), 233–248 | DOI | Zbl

[9] Davydov Y. A., “On distance in total variation between image measures”, Statistics Probability Letters, 129 (2017), 393–400 | DOI | Zbl

[10] Kosov E. D., “Fractional smoothness of images of logarithmically concave measures under polynomials”, J. Math. Anal. Appl., 462:1 (2018), 390–406 | DOI | Zbl

[11] Kosov E. D., “Besov classes on finite and infinite dimensional spaces”, Sbornik Math., 210:5 (2019), 663–692 | DOI | Zbl

[12] Nazarov F. L., “Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type”, St. Petersburg Math. J., 5:4 (1994), 663–717

[13] Nazarov F., Sodin M., Volberg A., “The geometric Kannan–Lovasz–Simonovits lemma, dimension-free estimates for the distribution of the values of polynomials, and the distribution of the zeros of random analytic functions”, St. Petersburg Math. J., 14:2 (2003), 351–366 | DOI | Zbl

[14] Nourdin I., Poly G., “Convergence in total variation on Wiener chaos”, Stochastic Process. Appl., 123:2 (2013), 651–674 | DOI | Zbl

[15] Zelenov G. I., “On distances between distributions of polynomials”, Theory Stoch. Processes, 22:2 (2017), 79–85 | Zbl

[16] Zelenov G. I., “Fractional smoothness of distributions of trigonometric polynomials on a space with a Gaussian measure”, The Bulletin of Irkutsk state University. Series Mathematics, 31 (2020), 78–95 (in Russian) | DOI | Zbl