Integration of the matrix nonlinear Schrödinger equation with a source
The Bulletin of Irkutsk State University. Series Mathematics, Tome 37 (2021), pp. 63-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is concerned with studying the matrix nonlinear Schrödinger equation with a self-consistent source. The source consists of the combination of the eigenfunctions of the corresponding spectral problem for the matrix Zakharov-Shabat system which has not spectral singularities. The theorem about the evolution of the scattering data of a non-self-adjoint matrix Zakharov-Shabat system which potential is a solution of the matrix nonlinear Schrödinger equation with the self-consistent source is proved. The obtained results allow us to solve the Cauchy problem for the matrix nonlinear Schrödinger equation with a self-consistent source in the class of the rapidly decreasing functions via the inverse scattering method. A one-to-one correspondence between the potential of the matrix Zakharov-Shabat system and scattering data provide the uniqueness of the solution of the considering problem. A step-by-step algorithm for finding a solution to the problem under consideration is presented.
Keywords: matrix nonlinear Schrödinger equation, self-consistent source, inverse scattering method, scattering data.
@article{IIGUM_2021_37_a4,
     author = {G. U. Urazboev and A. A. Reyimberganov and A. K. Babadjanova},
     title = {Integration of the matrix nonlinear {Schr\"odinger} equation with a source},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {63--76},
     year = {2021},
     volume = {37},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2021_37_a4/}
}
TY  - JOUR
AU  - G. U. Urazboev
AU  - A. A. Reyimberganov
AU  - A. K. Babadjanova
TI  - Integration of the matrix nonlinear Schrödinger equation with a source
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2021
SP  - 63
EP  - 76
VL  - 37
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2021_37_a4/
LA  - en
ID  - IIGUM_2021_37_a4
ER  - 
%0 Journal Article
%A G. U. Urazboev
%A A. A. Reyimberganov
%A A. K. Babadjanova
%T Integration of the matrix nonlinear Schrödinger equation with a source
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2021
%P 63-76
%V 37
%U http://geodesic.mathdoc.fr/item/IIGUM_2021_37_a4/
%G en
%F IIGUM_2021_37_a4
G. U. Urazboev; A. A. Reyimberganov; A. K. Babadjanova. Integration of the matrix nonlinear Schrödinger equation with a source. The Bulletin of Irkutsk State University. Series Mathematics, Tome 37 (2021), pp. 63-76. http://geodesic.mathdoc.fr/item/IIGUM_2021_37_a4/

[1] Bondarenko N., “Inverse scattering on the line for the matrix Sturm-Liouville equation”, J. Differential Equations, 262:3 (2017), 2073–2105 | DOI | Zbl

[2] Bondarenko N., Freiling G., Urazboev G., “Integration of the matrix KdV equation with self-consistent source”, J. Chaos, Solitons Fractals, 49 (2013), 21–27 | DOI | Zbl

[3] Demontis F., van der Mee C., “Characterization of Scattering Data for the AKNS System”, Acta Applicandae Mathematicae, 131 (2014), 29–47 | DOI | Zbl

[4] Demontis F., van der Mee C., “Novel formulation of inverse scattering and characterization of scattering data”, Discrete and Continuous Dynamical Systems, 2011, 343–350 | DOI | Zbl

[5] Gardner C. S., Greene J. M., Kruskal M. D., Miura R. M., “Method for Solving the Korteweg-deVries Equation”, Physical Review Letters, 19:19 (1967), 1095–1097 | DOI

[6] Faddeev L. D., Takhtajan L. A., Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, Berlin, 1987, 592 pp. | DOI | Zbl

[7] Khasanov A. B., Ibragimov A. M., “On the inverse problem for the Dirac operator with periodic potential”, Uzbek Mat. Zh., 2001, no. 3–4, 48–55

[8] Khasanov A. B., Reyimberganov A. A., “About the finite density solution of the higher nonlinear Schrodinger equation with self-consistent source”, Ufimsk. Mat. Zh., 1:4 (2009), 133–143 | Zbl

[9] Lax P. D., “Integrals of nonlinear equations of evolution and solitary waves”, Communications on Pure and Applied Mathematics, 21:5 (1968), 467–490 | DOI | Zbl

[10] Mel'nikov V. K., “Integration of the nonlinear Schroedinger equation with a self-consistent source”, Communications in Mathematical Physics, 137:2 (1991), 359–381 | DOI

[11] Reyimberganov A. A., Rakhimov I. D., “The Soliton Solutions for the Nonlinear Schrodinger Equation with Self-consistent Sources”, The Bulletin of Irkutsk State University. Series Mathematics, 35 (2021), 84–94 | DOI

[12] Urazboev G. U., Xoitmetov U. A., Babadjanova A. K., “Integration of the Matrix Modified Korteweg-de Vries Equation with an Integral-Type Source”, Theor. Math. Phys., 203 (2020), 734–746 | DOI | Zbl

[13] Yakhshimuratov A., “The Nonlinear Schrodinger Equation with a Self-consistent Source in the Class of Periodic Functions”, Mathematical Physics, Analysis and Geometry, 14:2 (2011), 153–169 | DOI | Zbl

[14] Zakharov V. E., Shabat A. B., “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation on waves in nonlinear media”, Soviet Physics JETP, 34 (1972), 62–69