Mots-clés : elliptic domains
@article{IIGUM_2021_37_a3,
author = {Z.-C. Li and H.-Ts. Huang and L.-P. Zhang and A. A. Lempert and Lee Ming-Gong},
title = {Analysis of dual null field methods for {Dirichlet} problems of {Laplace's} equation in elliptic domains with elliptic holes: bypassing degenerate scale},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {47--62},
year = {2021},
volume = {37},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2021_37_a3/}
}
TY - JOUR AU - Z.-C. Li AU - H.-Ts. Huang AU - L.-P. Zhang AU - A. A. Lempert AU - Lee Ming-Gong TI - Analysis of dual null field methods for Dirichlet problems of Laplace's equation in elliptic domains with elliptic holes: bypassing degenerate scale JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2021 SP - 47 EP - 62 VL - 37 UR - http://geodesic.mathdoc.fr/item/IIGUM_2021_37_a3/ LA - en ID - IIGUM_2021_37_a3 ER -
%0 Journal Article %A Z.-C. Li %A H.-Ts. Huang %A L.-P. Zhang %A A. A. Lempert %A Lee Ming-Gong %T Analysis of dual null field methods for Dirichlet problems of Laplace's equation in elliptic domains with elliptic holes: bypassing degenerate scale %J The Bulletin of Irkutsk State University. Series Mathematics %D 2021 %P 47-62 %V 37 %U http://geodesic.mathdoc.fr/item/IIGUM_2021_37_a3/ %G en %F IIGUM_2021_37_a3
Z.-C. Li; H.-Ts. Huang; L.-P. Zhang; A. A. Lempert; Lee Ming-Gong. Analysis of dual null field methods for Dirichlet problems of Laplace's equation in elliptic domains with elliptic holes: bypassing degenerate scale. The Bulletin of Irkutsk State University. Series Mathematics, Tome 37 (2021), pp. 47-62. http://geodesic.mathdoc.fr/item/IIGUM_2021_37_a3/
[1] Chen J. T., Han H., Kuo S. R., Kao S. K., “Regularization for ill-conditioned systems of integral equation of first kind with logarithmic kernel”, Inverse Problems in Science and Engineering, 22:7 (2014), 1176–1195 | DOI | Zbl
[2] Chen J. T., Hong H. K., “Review of dual finite element methods with emphasis on hypersingular integrals and divergent series”, Appl. Mech. Rev., 52:1 (1999), 17–33 | DOI
[3] Chen J. T., Lee Y. T., Chang Y. L., Jian J., “A self-regularized approach for rank-deficient systems in the BEM of 2D Laplace problems”, Inverse Problems in Science and Engineering, 25:1 (2017), 89–113 | DOI | Zbl
[4] Hong H. K., Chen J. T., “Derivations of integral equations of elasticit”, J. of Engineering Mechanics, 114 (1988), 1028–1044 | DOI
[5] Lee M. G., Li Z.C., Zhang L. P., Huang H. T., Chiang J. Y., “Algorithm singularity of the null-field method for Dirichlet problems of Laplace's equation in annular and circular domains”, Eng. Anal. Bound. Elem., 41 (2014), 160–172 | DOI | Zbl
[6] Lee M. G., Zhang L. P., Li Z.C., Kazakov A. L., “Dual Null Field Methods for Dirichlet Problems of Laplace's Equation in Circular Domains with Circular Holes”, Siberian Electronic Mathematical Reports, 19:1 (2021), 393–422 | DOI
[7] Li Z.C., Mathon R., Sermer P., “Boundary methods for solving elliptic problem with singularities and interfaces”, SIAM J. Numer. Anal., 24 (1987), 487–498 | DOI | Zbl
[8] Li Z.C., Zhang L. P., Lee M. G., “Interior field methods for Neumann problems of Laplace's equation in elliptic domains, Comparisons with degenerate scales”, Eng. Anal. Bound. Elem., 71 (2016), 190–202 | DOI | Zbl
[9] Li Z.C., Zhang L. P., Wei Y., Lee M. G., Chiang J. Y., “Boundary methods for Dirichlet problems of Laplace's equation in elliptic domains with elliptic holes”, Eng. Anal. Bound. Elem., 61 (2015), 92–103 | DOI
[10] Morse P. M., Feshbach H., Methods of Theoretical Physics, McGraw-Hill, Inc, New York, 1953, 997 pp. | Zbl
[11] Portela A., Aliabadi M. H., Rooke D. P., “The dual boundary element method: effective implementation for crack problems”, Int. J. Numer. Methods Engrg., 33 (1992), 1269–1287 | DOI | Zbl
[12] Zhang L. P., Li Z.C., Lee M. G., Wei Y., “Boundary methods for mixed boundary problems of Laplace's equation in elliptic domains with elliptic holes”, Eng. Anal. Bound. Elem., 63 (2016), 92–104 | DOI | Zbl