Mots-clés : diffusion wave, exact solution.
@article{IIGUM_2021_37_a2,
author = {A. L. Kazakov and P. A. Kuznetsov},
title = {Analytical diffusion wave-type solutions to a nonlinear parabolic system with cylindrical and spherical symmetry},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {31--46},
year = {2021},
volume = {37},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2021_37_a2/}
}
TY - JOUR AU - A. L. Kazakov AU - P. A. Kuznetsov TI - Analytical diffusion wave-type solutions to a nonlinear parabolic system with cylindrical and spherical symmetry JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2021 SP - 31 EP - 46 VL - 37 UR - http://geodesic.mathdoc.fr/item/IIGUM_2021_37_a2/ LA - en ID - IIGUM_2021_37_a2 ER -
%0 Journal Article %A A. L. Kazakov %A P. A. Kuznetsov %T Analytical diffusion wave-type solutions to a nonlinear parabolic system with cylindrical and spherical symmetry %J The Bulletin of Irkutsk State University. Series Mathematics %D 2021 %P 31-46 %V 37 %U http://geodesic.mathdoc.fr/item/IIGUM_2021_37_a2/ %G en %F IIGUM_2021_37_a2
A. L. Kazakov; P. A. Kuznetsov. Analytical diffusion wave-type solutions to a nonlinear parabolic system with cylindrical and spherical symmetry. The Bulletin of Irkutsk State University. Series Mathematics, Tome 37 (2021), pp. 31-46. http://geodesic.mathdoc.fr/item/IIGUM_2021_37_a2/
[1] Arguchintsev A. V., Poplevko V. P., “An optimal control problem by a hyperbolic system with boundary delay”, The Bulletin of Irkutsk State University. Series: Mathematics, 35 (2021), 3–17 | DOI | Zbl
[2] Bergman T. L., Lavine A. S., Incropera F. P., DeWitt D. P., Fundamentals of heat and mass transfer, John Wiley Sons, 2011, 992 pp.
[3] Filimonov M. Yu., “Representation of solutions of boundary value problems for nonlinear evolution equations by special series with recurrently caculated coefficients”, Journal of Physics: Conference Series, 2019, 012071 | DOI
[4] Gambino G., Lombardo M. C., Sammartino M., Sciacca V., “Turing pattern formation in the Brusselator system with nonlinear diffusion”, Physical Review E, 88 (2013), 042925 | DOI
[5] Kazakov A. L., “On exact solutions to a heat wave propagation boundary-value problem for a nonlinear heat equation”, Siberian Electronic Mathematical Reports, 16 (2019), 1057–1068 (in Russian) | DOI | Zbl
[6] Kazakov A. L., Kuznetsov P. A., Lempert A. A., “Analytical solutions to the singular problem for a system of nonlinear parabolic equations of the reaction-diffusion type”, Symmetry, 12:6 (2020), 999 | DOI
[7] Kazakov A. L., Kuznetsov P. A., Lempert A. A., “On construction of heat wave for nonlinear heat equation in symmetrical case”, The Bulletin of Irkutsk State University. Series Mathematics, 11 (2015), 39–53 (in Russian) | Zbl
[8] Kazakov A. L., Orlov Sv. S., “On some exact solutions of the nonlinear heat equation”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 22, no. 1, 2016, 112–123 (in Russian)
[9] Kazakov A. L., Orlov Sv. S., Orlov S. S., “Construction and study of exact solutions to a nonlinear heat equation”, Siberian Mathematical Journal, 59:3 (2018), 427–441 | DOI | DOI | Zbl
[10] Kazakov A. L., Spevak L. F., “Boundary element method and power series method for onedimensional non-linear filtration problems”, The Bulletin of Irkutsk State University. Series Mathematics, 5:2 (2012), 2–17 (in Russian) | Zbl
[11] Murray J., Mathematical biology: I. An introduction, Interdisciplinary applied mathematics, 17, Springer, New York, 2002, 575 pp. | DOI
[12] Polyanin A. D., Zaitsev V. F., Handbook of nonlinear partial differential equations, Chapman and Hall/CRC, New York, 2003, 840 pp. | DOI
[13] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Blow-up in quasilinear parabolic equations, Walter de Gruyte Berlin, New-York, 1995, 554 pp. | DOI | Zbl
[14] Sidorov A. F., Selected Works: Mathematics. Mechanics, Fizmatlit, M., 2001, 576 pp. (in Russian)
[15] Stepanova I. V., “Group analysis of variable coefficients heat and mass transfer equations with power nonlinearity of thermal diffusivity”, Applied Mathematics and Computation, 343 (2019), 57–66 | DOI | Zbl
[16] Vazquez J. L., The porous medium equation: mathematical theory, Clarendon Press, Oxford, 2007, 648 pp. | DOI
[17] Zemskov E. P., “Turing instability in reaction-diffusion systems with nonlinear diffusion”, Journal of Experimental and Theoretical Physics, 117:4 (2013), 764–769 | DOI