Exact solutions to the Oberbeck–Boussinesq equations for shear flows of a viscous binary fluid with allowance made for the Soret effect
The Bulletin of Irkutsk State University. Series Mathematics, Tome 37 (2021), pp. 17-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers an exact solution to the equations of thermal diffusion of a viscous incompressible fluid in the Boussinesq approximation with neglect of the Dufour effect for a steady shear flow. It is shown that the reduced system of constitutive relations is nonlinear and overdetermined. A nontrivial exact solution of this system is sought in the Lin–Sidorov–Aristov class. The resulting family of exact solutions allows one to describe steady-state inhomogeneous shear flows. This class generalizes the classical Couette, Poiseuille, and Ostroumov–Birikh solutions. It is demonstrated that the system of ordinary differential equations reduced within this class retains the properties of nonlinearity and overdetermination. A theorem on solvability conditions for the overdetermined system is proved; it is reported that, when these conditions are met, the solution is unique. The overdetermined system is solvable owing to the algebraic identity relating the horizontal velocity gradients, which are linear functions of the vertical coordinate. The constructive proof of the computation of hydrodynamic fields consists in the successive integration of the polynomials, the polynomial degree being dependent on the values of the boundary parameters.
Keywords: viscous binary fluid, Soret effect, shear flow, overdetermined system.
Mots-clés : exact solution
@article{IIGUM_2021_37_a1,
     author = {N. V. Burmasheva and E. Yu. Prosviryakov},
     title = {Exact solutions to the {Oberbeck{\textendash}Boussinesq} equations for shear flows of a viscous binary fluid with allowance made for the {Soret} effect},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {17--30},
     year = {2021},
     volume = {37},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2021_37_a1/}
}
TY  - JOUR
AU  - N. V. Burmasheva
AU  - E. Yu. Prosviryakov
TI  - Exact solutions to the Oberbeck–Boussinesq equations for shear flows of a viscous binary fluid with allowance made for the Soret effect
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2021
SP  - 17
EP  - 30
VL  - 37
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2021_37_a1/
LA  - en
ID  - IIGUM_2021_37_a1
ER  - 
%0 Journal Article
%A N. V. Burmasheva
%A E. Yu. Prosviryakov
%T Exact solutions to the Oberbeck–Boussinesq equations for shear flows of a viscous binary fluid with allowance made for the Soret effect
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2021
%P 17-30
%V 37
%U http://geodesic.mathdoc.fr/item/IIGUM_2021_37_a1/
%G en
%F IIGUM_2021_37_a1
N. V. Burmasheva; E. Yu. Prosviryakov. Exact solutions to the Oberbeck–Boussinesq equations for shear flows of a viscous binary fluid with allowance made for the Soret effect. The Bulletin of Irkutsk State University. Series Mathematics, Tome 37 (2021), pp. 17-30. http://geodesic.mathdoc.fr/item/IIGUM_2021_37_a1/

[1] Aristov S. N., Eddy currents in thin liquid layers, Dr. Phys. Math. Sci. Thesis, Vladivostok, 1990, 303 pp.

[2] Aristov S. N., Prosviryakov E. Y., “On laminar flows of planar free convection”, Rus. J. Nonlin. Dyn., 9:4 (2013), 651–657 (in Russian)

[3] Aristov S. N., Prosviryakov E. Y., “A new class of exact solutions for three-dimensional thermal diffusion equations”, Theoretical Foundations of Chemical Engineering, 50:3 (2016), 286–293 | DOI | DOI

[4] Bekezhanova V. B., Goncharova O. N., “On approaches to solving the problem of an interface deformation in a two-layer system with evaporation”, Izvestiya of Altai State University, 2018, no. 1 (99), 69–74 (in Russian) | DOI

[5] Birikh R. V., “Thermocapillary convection in a horizontal layer of liquid”, J. Appl. Mech. Tech. Phys., 1966, no. 7, 43–44

[6] Boussinesq J., Theorie analitique de la chaleur, v. 2, Gauthier Villars, Paris, 1903, 625 pp.

[7] Burmasheva N. V., Prosviryakov E. Yu., “Convective layered flows of a vertically whirling viscous incompressible fluid. Velocity field investigation”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 23:2 (2019), 341–360 | DOI | Zbl

[8] Burmasheva N. V., Prosviryakov E. Yu., “Thermocapillary convection of a vertical swirling liquid”, Theoretical Foundations of Chemical Engineering, 54:1 (2020), 230–239 | DOI | DOI

[9] Burmasheva N. V., Prosviryakov E. Yu., “Exact solution of Navier–Stokes equations describing spatially inhomogeneous flows of a rotating fluid”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 26, no. 2, 2020, 79–87 (in Russian) | DOI

[10] Burmasheva N. V., Prosviryakov E. Yu., “A class of exact solutions for two-dimensional equations of geophysical hydrodynamics with two Coriolis parameters”, The Bulletin of Irkutsk State University. Series Mathematics, 32 (2020), 33–48 (in Russian) | DOI | Zbl

[11] Burmasheva N. V., Prosviryakov E. Yu., “On Marangoni shear convective flows of inhomogeneous viscous incompressible fluids in view of the Soret effect”, Journal of King Saud University - Science, 32:8 (2020), 3364–3371 | DOI

[12] Chandra Reddy P., Raju M. C., Raju G. S. S., “MHD natural convective heat generation/absorbing and radiating fluid past a vertical plate embedded in porous medium-an exact solution”, Journal of the Serbian Society for Computational Mechanics, 12:2 (2018), 106–127 | DOI

[13] Dufour L., “Ueber die diffusion der gase durch poröse wände und die sie begleitenden temperaturveränderungen”, Arc. Phys. Nat. Sci. Geneve, 45 (1872), 490–492 | DOI

[14] Gershuni G. Z., Zhukovitskii E. M., Convective stability of incompressible fluids, Keter Publications/Wiley, Jerusalem, 1976, 330 pp.

[15] Goncharova O. N., Rezanova E. V., Lyulin Y. V., Kabov O. A., “Modeling of two-layer liquid-gas flow with account for evaporation”, Thermophysics and Aeromechanics, 22:5 (2015), 631–637 | DOI

[16] Lavrenteva O. M., Holenberg Y., Nir A., “Marangoni and natural convection in a horizontal layer of viscoplastic fluid with concentration dependent yield stress. Exact analytical solutions”, Microgravity Sci. Technol., 21 (2009), 59–65 | DOI

[17] Lin C. C., “Note on a class of exact solutions in magneto-hydrodynamics”, Archive for Rational Mechanics and Analysis, 1 (1958), 391–395 | DOI | Zbl

[18] Oberbeck A., “Uber die warmeleitung der flussigkeiten bei der berucksichtigung der stromungen infolge von temperaturdifferenzen”, Annal. Phys. Chem., 7:6 (1879), 271–292 | DOI

[19] Ostroumov G. A., Free convection under the condition of the internal problem, NACA Technical Memorandum No 1407, National Advisory Committee for Aeronautics, Washington, 1958

[20] Sidorov A. F., “Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory”, Journal of Applied Mechanics and Technical Physics, 30:2 (1989), 197–203 | DOI

[21] Shefer I. A., “Influence of the transverse temperature drop on the stability of two-layer fluid flows with evaporation”, Fluid Dynamics, 54:5 (2019), 603–613 | DOI | DOI | Zbl

[22] Soret C., “Sur l'état d'équilibre que prend au point de vue de sa concentration une dissolution saline primitivement homohéne dont deux parties sont portees a des températures différentes”, Arch. Sci. Phys. Nat., 2 (1879), 48–61

[23] Umavathi J. C., Sheremet M. A., Patil S. L., “Soret effects on the mixed convection flow using Robin boundary conditions”, Heat Transfer-Asian Research, 2019 | DOI | Zbl