Mots-clés : exact solution
@article{IIGUM_2021_37_a1,
author = {N. V. Burmasheva and E. Yu. Prosviryakov},
title = {Exact solutions to the {Oberbeck{\textendash}Boussinesq} equations for shear flows of a viscous binary fluid with allowance made for the {Soret} effect},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {17--30},
year = {2021},
volume = {37},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2021_37_a1/}
}
TY - JOUR AU - N. V. Burmasheva AU - E. Yu. Prosviryakov TI - Exact solutions to the Oberbeck–Boussinesq equations for shear flows of a viscous binary fluid with allowance made for the Soret effect JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2021 SP - 17 EP - 30 VL - 37 UR - http://geodesic.mathdoc.fr/item/IIGUM_2021_37_a1/ LA - en ID - IIGUM_2021_37_a1 ER -
%0 Journal Article %A N. V. Burmasheva %A E. Yu. Prosviryakov %T Exact solutions to the Oberbeck–Boussinesq equations for shear flows of a viscous binary fluid with allowance made for the Soret effect %J The Bulletin of Irkutsk State University. Series Mathematics %D 2021 %P 17-30 %V 37 %U http://geodesic.mathdoc.fr/item/IIGUM_2021_37_a1/ %G en %F IIGUM_2021_37_a1
N. V. Burmasheva; E. Yu. Prosviryakov. Exact solutions to the Oberbeck–Boussinesq equations for shear flows of a viscous binary fluid with allowance made for the Soret effect. The Bulletin of Irkutsk State University. Series Mathematics, Tome 37 (2021), pp. 17-30. http://geodesic.mathdoc.fr/item/IIGUM_2021_37_a1/
[1] Aristov S. N., Eddy currents in thin liquid layers, Dr. Phys. Math. Sci. Thesis, Vladivostok, 1990, 303 pp.
[2] Aristov S. N., Prosviryakov E. Y., “On laminar flows of planar free convection”, Rus. J. Nonlin. Dyn., 9:4 (2013), 651–657 (in Russian)
[3] Aristov S. N., Prosviryakov E. Y., “A new class of exact solutions for three-dimensional thermal diffusion equations”, Theoretical Foundations of Chemical Engineering, 50:3 (2016), 286–293 | DOI | DOI
[4] Bekezhanova V. B., Goncharova O. N., “On approaches to solving the problem of an interface deformation in a two-layer system with evaporation”, Izvestiya of Altai State University, 2018, no. 1 (99), 69–74 (in Russian) | DOI
[5] Birikh R. V., “Thermocapillary convection in a horizontal layer of liquid”, J. Appl. Mech. Tech. Phys., 1966, no. 7, 43–44
[6] Boussinesq J., Theorie analitique de la chaleur, v. 2, Gauthier Villars, Paris, 1903, 625 pp.
[7] Burmasheva N. V., Prosviryakov E. Yu., “Convective layered flows of a vertically whirling viscous incompressible fluid. Velocity field investigation”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 23:2 (2019), 341–360 | DOI | Zbl
[8] Burmasheva N. V., Prosviryakov E. Yu., “Thermocapillary convection of a vertical swirling liquid”, Theoretical Foundations of Chemical Engineering, 54:1 (2020), 230–239 | DOI | DOI
[9] Burmasheva N. V., Prosviryakov E. Yu., “Exact solution of Navier–Stokes equations describing spatially inhomogeneous flows of a rotating fluid”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 26, no. 2, 2020, 79–87 (in Russian) | DOI
[10] Burmasheva N. V., Prosviryakov E. Yu., “A class of exact solutions for two-dimensional equations of geophysical hydrodynamics with two Coriolis parameters”, The Bulletin of Irkutsk State University. Series Mathematics, 32 (2020), 33–48 (in Russian) | DOI | Zbl
[11] Burmasheva N. V., Prosviryakov E. Yu., “On Marangoni shear convective flows of inhomogeneous viscous incompressible fluids in view of the Soret effect”, Journal of King Saud University - Science, 32:8 (2020), 3364–3371 | DOI
[12] Chandra Reddy P., Raju M. C., Raju G. S. S., “MHD natural convective heat generation/absorbing and radiating fluid past a vertical plate embedded in porous medium-an exact solution”, Journal of the Serbian Society for Computational Mechanics, 12:2 (2018), 106–127 | DOI
[13] Dufour L., “Ueber die diffusion der gase durch poröse wände und die sie begleitenden temperaturveränderungen”, Arc. Phys. Nat. Sci. Geneve, 45 (1872), 490–492 | DOI
[14] Gershuni G. Z., Zhukovitskii E. M., Convective stability of incompressible fluids, Keter Publications/Wiley, Jerusalem, 1976, 330 pp.
[15] Goncharova O. N., Rezanova E. V., Lyulin Y. V., Kabov O. A., “Modeling of two-layer liquid-gas flow with account for evaporation”, Thermophysics and Aeromechanics, 22:5 (2015), 631–637 | DOI
[16] Lavrenteva O. M., Holenberg Y., Nir A., “Marangoni and natural convection in a horizontal layer of viscoplastic fluid with concentration dependent yield stress. Exact analytical solutions”, Microgravity Sci. Technol., 21 (2009), 59–65 | DOI
[17] Lin C. C., “Note on a class of exact solutions in magneto-hydrodynamics”, Archive for Rational Mechanics and Analysis, 1 (1958), 391–395 | DOI | Zbl
[18] Oberbeck A., “Uber die warmeleitung der flussigkeiten bei der berucksichtigung der stromungen infolge von temperaturdifferenzen”, Annal. Phys. Chem., 7:6 (1879), 271–292 | DOI
[19] Ostroumov G. A., Free convection under the condition of the internal problem, NACA Technical Memorandum No 1407, National Advisory Committee for Aeronautics, Washington, 1958
[20] Sidorov A. F., “Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory”, Journal of Applied Mechanics and Technical Physics, 30:2 (1989), 197–203 | DOI
[21] Shefer I. A., “Influence of the transverse temperature drop on the stability of two-layer fluid flows with evaporation”, Fluid Dynamics, 54:5 (2019), 603–613 | DOI | DOI | Zbl
[22] Soret C., “Sur l'état d'équilibre que prend au point de vue de sa concentration une dissolution saline primitivement homohéne dont deux parties sont portees a des températures différentes”, Arch. Sci. Phys. Nat., 2 (1879), 48–61
[23] Umavathi J. C., Sheremet M. A., Patil S. L., “Soret effects on the mixed convection flow using Robin boundary conditions”, Heat Transfer-Asian Research, 2019 | DOI | Zbl