Formulas and properties for families of theories of Abelian groups
The Bulletin of Irkutsk State University. Series Mathematics, Tome 36 (2021), pp. 95-109 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

First-order formulas reflect an information for semantic and syntactic properties. Links between formulas and properties define their existential and universal interrelations which produce both structural and topological possibilities for characteristics classifying families of semantic and syntactic objects. We adapt general approaches describing links between formulas and properties for families of Abelian groups and their theories defining possibilities for characteristics of formulas and properties including rank values. This adaptation is based on formulas reducing each formula to an appropriate Boolean combination of given ones defining Szmielew invariants for theories of Abelian groups. Using this basedness we describe a trichotomy of possibilities for the rank values of sentences defining neighbourhoods for the set of theories of Abelian groups: the rank can be equal $-1$, $0$, or $\infty$. Thus the neighbourhoods are either finite or contain continuum many theories. Using the trichotomy we show that each sentence defining a neighbourhood either belongs to finitely many theories or it is generic. We introduce the notion of rich property and generalize the main results for these properties.
Keywords: property, elementary theory, abelian group, rank.
Mots-clés : formula
@article{IIGUM_2021_36_a7,
     author = {In. I. Pavlyuk and S. V. Sudoplatov},
     title = {Formulas and properties for families of theories of {Abelian} groups},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {95--109},
     year = {2021},
     volume = {36},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2021_36_a7/}
}
TY  - JOUR
AU  - In. I. Pavlyuk
AU  - S. V. Sudoplatov
TI  - Formulas and properties for families of theories of Abelian groups
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2021
SP  - 95
EP  - 109
VL  - 36
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2021_36_a7/
LA  - en
ID  - IIGUM_2021_36_a7
ER  - 
%0 Journal Article
%A In. I. Pavlyuk
%A S. V. Sudoplatov
%T Formulas and properties for families of theories of Abelian groups
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2021
%P 95-109
%V 36
%U http://geodesic.mathdoc.fr/item/IIGUM_2021_36_a7/
%G en
%F IIGUM_2021_36_a7
In. I. Pavlyuk; S. V. Sudoplatov. Formulas and properties for families of theories of Abelian groups. The Bulletin of Irkutsk State University. Series Mathematics, Tome 36 (2021), pp. 95-109. http://geodesic.mathdoc.fr/item/IIGUM_2021_36_a7/

[1] Eklof P. C., Fischer E. R., “The elementary theory of abelian groups”, Annals of Mathematical Logic, 4 (1972), 115–171 | DOI

[2] Ershov Yu. L., Palyutin E. A., Mathematical logic, Fizmatlit Publ, M., 2011, 356 pp. (in Russian)

[3] Markhabatov N. D., Sudoplatov S. V., “Ranks for families of all theories of given languages”, Eurasian Mathematical Journal, 2021 (to appear); 2019, 9 pp., arXiv: 1901.09903v1 [math.LO]

[4] Markhabatov N. D., Sudoplatov S. V., “Definable subfamilies of theories, related calculi and ranks”, Siberian Electronic Mathematical Reports, 17 (2020), 700–714 | DOI

[5] Markhabatov N. D., Sudoplatov S. V., “Topologies, ranks and closures for families of theories. I”, Algebra and Logic, 59:6 (2021), 437–455 | DOI | DOI

[6] Palyutin E. A., “Spectrum and Structure of Models of Complete Theories”, Handbook of mathematical logic, v. 1, Model Theory, ed. J. Barwise, Nauka Publ., M., 1982, 320–387 (in Russian)

[7] Pavlyuk In.I., Sudoplatov S. V., “Families of theories of abelian groups and their closures”, Bulletin of Karaganda University. Mathematics, 92:4 (2018), 72–78

[8] Pavlyuk In.I., Sudoplatov S. V., “Ranks for families of theories of abelian groups”, The Bulletin of Irkutsk State University. Series Mathematics, 28 (2019), 95–112 | DOI

[9] Pavlyuk In.I., Sudoplatov S. V., “Approximations for theories of abelian groups”, Mathematics and Statistics, 8:2 (2020), 220–224 | DOI

[10] Poizat B., Groupes Stables, Nur Al-Mantiq Wal-Mari'fah, Villeurbanne, 1987, 216 pp.

[11] Sudoplatov S. V., Formulas and properties, 2021, 16 pp., arXiv: 2104.00468v1 [math.LO]

[12] Sudoplatov S. V., “Ranks for families of theories and their spectra”, Lobachevskii Journal of Mathematics, 2019 (to appear) , 17 pp., arXiv: 1901.08464v1 [math.LO]

[13] Sudoplatov S. V., “Approximations of theories”, Siberian Electronic Mathematical Reports, 17 (2020), 715–725 | DOI

[14] Sudoplatov S. V., “Closures and generating sets related to combinations of structures”, The Bulletin of Irkutsk State University. Series Mathematics, 16 (2016), 131–144

[15] Sudoplatov S. V., “Hierarchy of families of theories and their rank characteristics”, The Bulletin of Irkutsk State University. Series Mathematics, 33 (2020), 80–95 | DOI

[16] Szmielew W., “Elementary properties of Abelian groups”, Fundamenta Mathematicae, 41 (1955), 203–271 | DOI

[17] Tent K., Ziegler M., A Course in Model Theory, Lecture Notes in Logic, 40, Cambridge University Press, Cambridge, 2012, 248 pp.

[18] Truss J. K., “Generic Automorphisms of Homogeneous Structures”, Proceedings of the London Mathematical Society, 65:3 (1992), 121–141 | DOI