Subdifferential decomposition of 1D-regularized total variation with nonhomogeneous coefficients
The Bulletin of Irkutsk State University. Series Mathematics, Tome 36 (2021), pp. 69-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider a convex function defined as a 1D-regularized total variation with nonhomogeneous coefficients, and prove the Main Theorem concerned with the decomposition of the subdifferential of this convex function to a weighted singular diffusion and a linear regular diffusion. The Main Theorem will be to enhance the previous regularity result for quasilinear equation with singularity, and moreover, it will be to provide some useful information in the advanced mathematical studies of grain boundary motion, based on KWC type energy.
Keywords: subdifferential decomposition, nonhomogeneous coefficients, quasilinear equation with singularity.
@article{IIGUM_2021_36_a5,
     author = {Sh. Kubota},
     title = {Subdifferential decomposition of {1D-regularized} total variation with nonhomogeneous coefficients},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {69--83},
     year = {2021},
     volume = {36},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2021_36_a5/}
}
TY  - JOUR
AU  - Sh. Kubota
TI  - Subdifferential decomposition of 1D-regularized total variation with nonhomogeneous coefficients
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2021
SP  - 69
EP  - 83
VL  - 36
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2021_36_a5/
LA  - en
ID  - IIGUM_2021_36_a5
ER  - 
%0 Journal Article
%A Sh. Kubota
%T Subdifferential decomposition of 1D-regularized total variation with nonhomogeneous coefficients
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2021
%P 69-83
%V 36
%U http://geodesic.mathdoc.fr/item/IIGUM_2021_36_a5/
%G en
%F IIGUM_2021_36_a5
Sh. Kubota. Subdifferential decomposition of 1D-regularized total variation with nonhomogeneous coefficients. The Bulletin of Irkutsk State University. Series Mathematics, Tome 36 (2021), pp. 69-83. http://geodesic.mathdoc.fr/item/IIGUM_2021_36_a5/

[1] Ambrosio L., Fusco N., Pallara D., Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000 | DOI

[2] Attouch H., Variational Convergence for Functions and Operators, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984 | DOI

[3] Barbu V., Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer Monographs in Mathematics, Springer, New York, 2010 | DOI

[4] Bellettini G., Bouchitté G., Fragalà I., “BV functions with respect to a measure and relaxation of metric integral functionals”, J. Convex Anal., 6:2 (1999), 349–366

[5] Brézis H., Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North-Holland Mathematics Studies, 5, North-Holland Publishing Co., Amsterdam–London; American Elsevier Publishing Co., Inc., New York, 1973 (Notas de Matemática (50))

[6] Colli P., Gilardi G., Nakayashiki R., Shirakawa K., “A class of quasi-linear Allen–Cahn type equations with dynamic boundary conditions”, Nonlinear Anal., 158 (2017), 32–59 | DOI

[7] Ekeland I., Témam R, Convex analysis and variational problems, Translated from the French, Classics in Applied Mathematics, 28, english edition, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999 | DOI

[8] Giga Y., Kashima Y., Yamazaki N., “Local solvability of a constrained gradient system of total variation”, Abstr. Appl. Anal., 8 (2004), 651–682 | DOI

[9] Kobayashi R., Warren J. A., Carter W. C., “A continuum model of grain boundaries”, Phys. D, 140:1–2 (2000), 141–150 | DOI

[10] Ladyženskaja O. A., Solonnikov V. A., Ural'ceva N. N., Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, R.I., 1968 | DOI

[11] Mosco U., “Convergence of convex sets and of solutions of variational inequalities”, Advances in Math., 3 (1969), 510–585 | DOI

[12] Mucha P. B., Rybka P., “Well posedness of sudden directional diffusion equations”, Math. Methods Appl. Sci., 36:17 (2013), 2359–2370 | DOI

[13] Shirakawa K., Watanabe H., Yamazaki N., “Phase-field systems for grain boundary motions under isothermal solidifications”, Adv. Math. Sci. Appl., 24:2 (2014), 353–400

[14] Watanabe H., Shirakawa K., “Energy-dissipation in a coupled system of Allen-Cahn-type equation and Kobayashi-Warren-Carter-type model of grain boundary motion”, Math. Methods Appl. Sci., 43:17 (2020), 10138–10167 | DOI