@article{IIGUM_2021_36_a5,
author = {Sh. Kubota},
title = {Subdifferential decomposition of {1D-regularized} total variation with nonhomogeneous coefficients},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {69--83},
year = {2021},
volume = {36},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2021_36_a5/}
}
TY - JOUR AU - Sh. Kubota TI - Subdifferential decomposition of 1D-regularized total variation with nonhomogeneous coefficients JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2021 SP - 69 EP - 83 VL - 36 UR - http://geodesic.mathdoc.fr/item/IIGUM_2021_36_a5/ LA - en ID - IIGUM_2021_36_a5 ER -
Sh. Kubota. Subdifferential decomposition of 1D-regularized total variation with nonhomogeneous coefficients. The Bulletin of Irkutsk State University. Series Mathematics, Tome 36 (2021), pp. 69-83. http://geodesic.mathdoc.fr/item/IIGUM_2021_36_a5/
[1] Ambrosio L., Fusco N., Pallara D., Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000 | DOI
[2] Attouch H., Variational Convergence for Functions and Operators, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984 | DOI
[3] Barbu V., Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer Monographs in Mathematics, Springer, New York, 2010 | DOI
[4] Bellettini G., Bouchitté G., Fragalà I., “BV functions with respect to a measure and relaxation of metric integral functionals”, J. Convex Anal., 6:2 (1999), 349–366
[5] Brézis H., Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North-Holland Mathematics Studies, 5, North-Holland Publishing Co., Amsterdam–London; American Elsevier Publishing Co., Inc., New York, 1973 (Notas de Matemática (50))
[6] Colli P., Gilardi G., Nakayashiki R., Shirakawa K., “A class of quasi-linear Allen–Cahn type equations with dynamic boundary conditions”, Nonlinear Anal., 158 (2017), 32–59 | DOI
[7] Ekeland I., Témam R, Convex analysis and variational problems, Translated from the French, Classics in Applied Mathematics, 28, english edition, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999 | DOI
[8] Giga Y., Kashima Y., Yamazaki N., “Local solvability of a constrained gradient system of total variation”, Abstr. Appl. Anal., 8 (2004), 651–682 | DOI
[9] Kobayashi R., Warren J. A., Carter W. C., “A continuum model of grain boundaries”, Phys. D, 140:1–2 (2000), 141–150 | DOI
[10] Ladyženskaja O. A., Solonnikov V. A., Ural'ceva N. N., Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, R.I., 1968 | DOI
[11] Mosco U., “Convergence of convex sets and of solutions of variational inequalities”, Advances in Math., 3 (1969), 510–585 | DOI
[12] Mucha P. B., Rybka P., “Well posedness of sudden directional diffusion equations”, Math. Methods Appl. Sci., 36:17 (2013), 2359–2370 | DOI
[13] Shirakawa K., Watanabe H., Yamazaki N., “Phase-field systems for grain boundary motions under isothermal solidifications”, Adv. Math. Sci. Appl., 24:2 (2014), 353–400
[14] Watanabe H., Shirakawa K., “Energy-dissipation in a coupled system of Allen-Cahn-type equation and Kobayashi-Warren-Carter-type model of grain boundary motion”, Math. Methods Appl. Sci., 43:17 (2020), 10138–10167 | DOI