On the solvability of a class of nonlinear Urysohn integral equations on the positive half-line
The Bulletin of Irkutsk State University. Series Mathematics, Tome 36 (2021), pp. 57-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper investigates the Urysohn's nonlinear integral equation on the positive half-line. Some special cases of this equation have specific applications in different areas of modern natural science. In particular, such equations arise in the kinetic theory of gases, in the theory of $p$-adic open-closed strings, in mathematical theory of the spatio-temporal spread of the epidemic, and in theory of radiative transfer in spectral lines. The existence theorem for nonnegative nontrivial and bounded solutions is proved. Some qualitative properties of the constructed solution are studied. Specific applied examples of the Urysohn's kernel satisfying all the conditions of the approved theorem are provided.
Keywords: Urysohn equation, monotonicity, Caratheodory condition, iterations, bounded solution.
@article{IIGUM_2021_36_a4,
     author = {Kh. A. Khachatryan and H. S. Petrosyan},
     title = {On the solvability of a class of nonlinear {Urysohn} integral equations on the positive half-line},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {57--68},
     year = {2021},
     volume = {36},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2021_36_a4/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
AU  - H. S. Petrosyan
TI  - On the solvability of a class of nonlinear Urysohn integral equations on the positive half-line
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2021
SP  - 57
EP  - 68
VL  - 36
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2021_36_a4/
LA  - en
ID  - IIGUM_2021_36_a4
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%A H. S. Petrosyan
%T On the solvability of a class of nonlinear Urysohn integral equations on the positive half-line
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2021
%P 57-68
%V 36
%U http://geodesic.mathdoc.fr/item/IIGUM_2021_36_a4/
%G en
%F IIGUM_2021_36_a4
Kh. A. Khachatryan; H. S. Petrosyan. On the solvability of a class of nonlinear Urysohn integral equations on the positive half-line. The Bulletin of Irkutsk State University. Series Mathematics, Tome 36 (2021), pp. 57-68. http://geodesic.mathdoc.fr/item/IIGUM_2021_36_a4/

[1] Arabadzhyan L. G., Engibaryan N. B., “Convolution equations and nonlinear functional equations”, J. Soviet Math., 36:6 (1987), 745–791 | DOI

[2] Cercignani C., The Boltzmann equation and its applications, Appl. Math. Sci., 67, Springer-Verlag, New-York, 1988, 455 pp.

[3] Diekmann O., “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biology, 6:2 (1978), 109–130 | DOI

[4] Diekmann O., Kaper H.G., “On the bounded solutions of a nonlinear convolution equation”, Nonlinear Analysis, Theory Math., Appl., 2:6 (1978), 721–737 | DOI

[5] Engibaryan N. B., “On a problem in nonlinear radiative transfer”, Astrophysics, 2:2 (1966), 12–14 | DOI

[6] Kolmogorov A. N., Fomin S. V., Elements of the Theory of Functions and Functional Analysis, Nauka Publ, M., 1981, 544 pp. (in Russian)

[7] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevsky P. E., Integral operators in Space of summerable functions, Nauka Publ, M., 1966, 500 pp. (in Russian)

[8] Khachatryan A.Kh., Khachatryan Kh.A., “A one parameter family of positive solutions of the nonlinear stationary Boltzmann equation (in the framework of a modified model)”, Russian Mathematical Surveys, 72:3 (2017), 571–573 | DOI | DOI

[9] Khachatryan A.Kh., Khachatryan Kh.A., “On the Solvability of Some Nonlinear Integral Equations in Problems of Epidemic Spread”, Proceedings of the Steklov Institute of Mathematics, 306 (2019), 271–287 | DOI | DOI

[10] Khachatryan Kh.A., “Solvability of Some Classes of Nonlinear Singular Boundary Value Problems in the Theory of p-Adic Open-Closed Strings”, Theoretical and Mathematical Physics, 200:1 (2019), 1015–1025 | DOI | DOI

[11] Khachatryan Kh.A., “Sufficient conditions for the solvability of the Urysohn integral equation on a half-line”, Doklady Mathematics, 79:2 (2009), 246–249 | DOI

[12] Khachatryan A.Kh., Khachatryan Kh.A., “On the construction of a nonnegative solution for one class of Urysohn-type nonlinear integral equations on a semiaxis”, Ukrainian Mathematical Journal, 63:1 (2011), 134–145 | DOI

[13] Khachatryan Kh.A., “On a class of integral equations of Urysohn type with strong non-linearity”, Izv. Math., 76:1 (2012), 163–189 | DOI | DOI

[14] Khachatryan Kh.A., Petrosyan H. S., “On a Class of Integral Equations with Convex Nonlinearity on Semiaxis”, Journal of Contemporary Mathematical Analysis, 55:1 (2020), 42–53 | DOI

[15] Sergeev A. G., Khachatryan Kh.A., “On the solvability of a class of nonlinear integral equations in the problem of a spread of an epidemic”, Transactions of the Moscow Mathematical Society, 80:1 (2019), 95–111 | DOI

[16] Vladimirov V. S., Volovich Ya.I., “Nonlinear Dynamics Equation in p-Adic String Theory”, Theoret. and Math. Phys., 138:3 (2004), 297–309 | DOI | DOI