@article{IIGUM_2021_36_a4,
author = {Kh. A. Khachatryan and H. S. Petrosyan},
title = {On the solvability of a class of nonlinear {Urysohn} integral equations on the positive half-line},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {57--68},
year = {2021},
volume = {36},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2021_36_a4/}
}
TY - JOUR AU - Kh. A. Khachatryan AU - H. S. Petrosyan TI - On the solvability of a class of nonlinear Urysohn integral equations on the positive half-line JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2021 SP - 57 EP - 68 VL - 36 UR - http://geodesic.mathdoc.fr/item/IIGUM_2021_36_a4/ LA - en ID - IIGUM_2021_36_a4 ER -
%0 Journal Article %A Kh. A. Khachatryan %A H. S. Petrosyan %T On the solvability of a class of nonlinear Urysohn integral equations on the positive half-line %J The Bulletin of Irkutsk State University. Series Mathematics %D 2021 %P 57-68 %V 36 %U http://geodesic.mathdoc.fr/item/IIGUM_2021_36_a4/ %G en %F IIGUM_2021_36_a4
Kh. A. Khachatryan; H. S. Petrosyan. On the solvability of a class of nonlinear Urysohn integral equations on the positive half-line. The Bulletin of Irkutsk State University. Series Mathematics, Tome 36 (2021), pp. 57-68. http://geodesic.mathdoc.fr/item/IIGUM_2021_36_a4/
[1] Arabadzhyan L. G., Engibaryan N. B., “Convolution equations and nonlinear functional equations”, J. Soviet Math., 36:6 (1987), 745–791 | DOI
[2] Cercignani C., The Boltzmann equation and its applications, Appl. Math. Sci., 67, Springer-Verlag, New-York, 1988, 455 pp.
[3] Diekmann O., “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biology, 6:2 (1978), 109–130 | DOI
[4] Diekmann O., Kaper H.G., “On the bounded solutions of a nonlinear convolution equation”, Nonlinear Analysis, Theory Math., Appl., 2:6 (1978), 721–737 | DOI
[5] Engibaryan N. B., “On a problem in nonlinear radiative transfer”, Astrophysics, 2:2 (1966), 12–14 | DOI
[6] Kolmogorov A. N., Fomin S. V., Elements of the Theory of Functions and Functional Analysis, Nauka Publ, M., 1981, 544 pp. (in Russian)
[7] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevsky P. E., Integral operators in Space of summerable functions, Nauka Publ, M., 1966, 500 pp. (in Russian)
[8] Khachatryan A.Kh., Khachatryan Kh.A., “A one parameter family of positive solutions of the nonlinear stationary Boltzmann equation (in the framework of a modified model)”, Russian Mathematical Surveys, 72:3 (2017), 571–573 | DOI | DOI
[9] Khachatryan A.Kh., Khachatryan Kh.A., “On the Solvability of Some Nonlinear Integral Equations in Problems of Epidemic Spread”, Proceedings of the Steklov Institute of Mathematics, 306 (2019), 271–287 | DOI | DOI
[10] Khachatryan Kh.A., “Solvability of Some Classes of Nonlinear Singular Boundary Value Problems in the Theory of p-Adic Open-Closed Strings”, Theoretical and Mathematical Physics, 200:1 (2019), 1015–1025 | DOI | DOI
[11] Khachatryan Kh.A., “Sufficient conditions for the solvability of the Urysohn integral equation on a half-line”, Doklady Mathematics, 79:2 (2009), 246–249 | DOI
[12] Khachatryan A.Kh., Khachatryan Kh.A., “On the construction of a nonnegative solution for one class of Urysohn-type nonlinear integral equations on a semiaxis”, Ukrainian Mathematical Journal, 63:1 (2011), 134–145 | DOI
[13] Khachatryan Kh.A., “On a class of integral equations of Urysohn type with strong non-linearity”, Izv. Math., 76:1 (2012), 163–189 | DOI | DOI
[14] Khachatryan Kh.A., Petrosyan H. S., “On a Class of Integral Equations with Convex Nonlinearity on Semiaxis”, Journal of Contemporary Mathematical Analysis, 55:1 (2020), 42–53 | DOI
[15] Sergeev A. G., Khachatryan Kh.A., “On the solvability of a class of nonlinear integral equations in the problem of a spread of an epidemic”, Transactions of the Moscow Mathematical Society, 80:1 (2019), 95–111 | DOI
[16] Vladimirov V. S., Volovich Ya.I., “Nonlinear Dynamics Equation in p-Adic String Theory”, Theoret. and Math. Phys., 138:3 (2004), 297–309 | DOI | DOI