A note on anti-Berge equilibrium for bimatrix game
The Bulletin of Irkutsk State University. Series Mathematics, Tome 36 (2021), pp. 3-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce a new concept of equilibrium based on Nash and Berge equilibriums. This equilibrium is called Anti-Berge equilibrium. We prove an existence of Anti-Berge equilibrium in the game. Based on Mills theorem [9], we reduce finding Anti-Berge equilibrium to a quadratic programming problem with linear constraints. The proposed approach has been illustrated on an example.
Keywords: Berge equilibrium, optimization
Mots-clés : bimatrix game, Anti-Berge equlibrium.
@article{IIGUM_2021_36_a0,
     author = {R. Enkhbat},
     title = {A note on {anti-Berge} equilibrium for bimatrix game},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {3--13},
     year = {2021},
     volume = {36},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2021_36_a0/}
}
TY  - JOUR
AU  - R. Enkhbat
TI  - A note on anti-Berge equilibrium for bimatrix game
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2021
SP  - 3
EP  - 13
VL  - 36
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2021_36_a0/
LA  - en
ID  - IIGUM_2021_36_a0
ER  - 
%0 Journal Article
%A R. Enkhbat
%T A note on anti-Berge equilibrium for bimatrix game
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2021
%P 3-13
%V 36
%U http://geodesic.mathdoc.fr/item/IIGUM_2021_36_a0/
%G en
%F IIGUM_2021_36_a0
R. Enkhbat. A note on anti-Berge equilibrium for bimatrix game. The Bulletin of Irkutsk State University. Series Mathematics, Tome 36 (2021), pp. 3-13. http://geodesic.mathdoc.fr/item/IIGUM_2021_36_a0/

[1] Abalo K.Y., Kostreva M.M., “Some existence theorems of Nash and Berge equilibria”, Appl. Math. Lett., 17 (2004), 569–573 | DOI

[2] Abalo K.Y., Kostreva M.M., “Berge equilibrium: Some recent results from fixed-point theorems”, Appl. Math. Comput., 169 (2005), 624–638 | DOI

[3] Antipin A.S., “Equilibrium programming: models and solution methods”, The Bulletin of Irkutsk State University. Series Mathematics, 2:1 (2009), 8–36

[4] Aubin J.P., Optima and Equilibria, Springer-Verlag, Berlin–Heidelberg, 1998 | DOI

[5] Berge C., Theorie generale des jeux n-personnes, Gauthier Villars, Paris, 1957

[6] Colman A.M., Korner T.W., Musy O., Tazdait T., “Mutual support in games: some properties of Berge equilibria”, J. Math. Psychol., 55:2 (2011), 166–175 | DOI

[7] Crettez B., “On Sugdens mutually benecial practice and Berge equilibrium”, Int. Rev. Econ., 64:4 (2017), 357–366 | DOI

[8] Kolmogorov A.N., Fomin C.B., Elements of theory functions and functional analysis, Nauka Publ, M., 1989

[9] Mills Harlan, “Equilibrium point in finite game”, J. Soc. Indust. Appl. Math., 8:2 (1960), 397–402 | DOI

[10] Mindia E. Salukvadze, Vladislav I. Zhukovskiy, The Berge equilibrium: A Game-Theoretic Framework for the Golden Rule of Ethics, Birkhauser, 2020 | DOI

[11] Nessah R., “Non cooperative games”, Annals of Mathematics, 54 (1951), 286–295 | DOI

[12] Nessah R., Larbani M., Tazdait T., “A note on Berge equilibrium”, Applied Mathematics Letter, 20:8 (2007), 926–932 | DOI

[13] Enkhbat R., Batbileg S., Tungalag N., Anikin A., Gornov A., “A Computational Method for Solving N-person Game”, The Bulletin of Irkutsk State University. Series Mathematics, 20 (2017), 109–121 | DOI

[14] Enkhbat R., Batbileg S., “Optimization approach to Berge equilibrium for bimatrix game”, Optimization letters, 15:2 (2021), 711–718 | DOI

[15] Tucker A., “A two-person dilemma”, Readings in games and information, ed. E. Rassmussen, Stanford University, 1950, 7–8

[16] Zhukovskiy V.I., “Some problems of non-antagonistic differential games”, Mathematical methods in operation research, Bulgarian Academy of Sciences Publ., 1985, 103–195

[17] Zhukovskiy V.I., Kudryavtsev K.N., “Mathematical foundations of the Golden Rule. I. Static case”, Autom. Remote Control, 78 (2017), 1920–1940 | DOI

[18] Vaisman K.S., Berge equilibrium, Ph. D. thesis, St. Petersburg State Univ., St. Petersburg, 1995

[19] Vaisman K.S., “Berge equilibrium”: Zhukovskii V.I., Chikrii A.A., Linear-quadratic differential games, section 3.2, Naukova Dumka Publ., Kiev, 1994, 119–142 (in Russian)