A note on anti-Berge equilibrium for bimatrix game
The Bulletin of Irkutsk State University. Series Mathematics, Tome 36 (2021), pp. 3-13

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a new concept of equilibrium based on Nash and Berge equilibriums. This equilibrium is called Anti-Berge equilibrium. We prove an existence of Anti-Berge equilibrium in the game. Based on Mills theorem [9], we reduce finding Anti-Berge equilibrium to a quadratic programming problem with linear constraints. The proposed approach has been illustrated on an example.
Keywords: Berge equilibrium, optimization
Mots-clés : bimatrix game, Anti-Berge equlibrium.
@article{IIGUM_2021_36_a0,
     author = {R. Enkhbat},
     title = {A note on {anti-Berge} equilibrium for bimatrix game},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {36},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2021_36_a0/}
}
TY  - JOUR
AU  - R. Enkhbat
TI  - A note on anti-Berge equilibrium for bimatrix game
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2021
SP  - 3
EP  - 13
VL  - 36
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2021_36_a0/
LA  - en
ID  - IIGUM_2021_36_a0
ER  - 
%0 Journal Article
%A R. Enkhbat
%T A note on anti-Berge equilibrium for bimatrix game
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2021
%P 3-13
%V 36
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIGUM_2021_36_a0/
%G en
%F IIGUM_2021_36_a0
R. Enkhbat. A note on anti-Berge equilibrium for bimatrix game. The Bulletin of Irkutsk State University. Series Mathematics, Tome 36 (2021), pp. 3-13. http://geodesic.mathdoc.fr/item/IIGUM_2021_36_a0/