@article{IIGUM_2021_35_a6,
author = {A. A. Stepanova},
title = {$S$-acts over a well-ordered monoid with modular congruence lattice},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {87--102},
year = {2021},
volume = {35},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2021_35_a6/}
}
A. A. Stepanova. $S$-acts over a well-ordered monoid with modular congruence lattice. The Bulletin of Irkutsk State University. Series Mathematics, Tome 35 (2021), pp. 87-102. http://geodesic.mathdoc.fr/item/IIGUM_2021_35_a6/
[1] Egorova D. P., “Structure of Congruences of Unary Algebra”, Intern. Sci. Collection, Ordered Sets and Lattices, 5, Saratov State University Publ., Saratov, 1978, 11–44 (in Russian)
[2] Haliullina A. R., “S-acts Congruence over Groups”, Microelectronics and Informatics - 2013, Proc. 20th All-Russian Interuniversity Sci. and Techn. Conf. of students and postgraduates (Moscow, 2013), 2013, 148 (in Russian)
[3] Kartashova A. V., “On Commutative Unary Algebras with Totally Ordered Congruence Lattice”, Math. Notes, 95:1 (2014), 67–77 | DOI
[4] Kartashov V. K., Kartashova A. V., Ponomarjov V. N., “On conditions for distributivity or modularity of congruence lattices of commutative unary algebras”, Izv. Saratov Univ. New Series. Ser. Math. Mech. Inform., 13:4(2) (2013), 52–57 (in Russian)
[5] Kilp M., Knauer U., Mikhalev A. V., Monoids, Acts and Categories, Walter de Gruyter, N.Y.–Berlin, 2000
[6] Kozhukhov I. B., Mikhalev A. V., “Acts over semigroups”, Fundam. Prikl. Mat.
[7] Kozhukhov I. B., Pryanichnikov A. M., Simakova A. R., “Conditions of modularity of the congruence lattice of an act over a rectangular band”, Izv. RAN. Ser. Math., 84:2 (2020), 90–125 (in Russian) | DOI
[8] Ptahov D. O., Stepanova A. A., “S-acts Congruence Lattices”, Far Eastern Mathematical Journal, 13:1 (2013), 107–115 (in Russian)
[9] Skornyakov L. A., Elements of abstract algebra, Nauka Publ, M., 1983 (in Russian)
[10] Stepanova A. A., Kazak M. S., “Congruence Lattices of S-acts over a well-ordered Monoid”, Siberian Electronic Mathematical Reports, 15 (2019), 1147–1157 (in Russian) | DOI