@article{IIGUM_2021_35_a4,
author = {U. Ariunaa and M. Dumbser and Ts. Sarantuya},
title = {Complete {Riemann} solvers for the hyperbolic {GPR} model of continuum mechanics},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {60--72},
year = {2021},
volume = {35},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2021_35_a4/}
}
TY - JOUR AU - U. Ariunaa AU - M. Dumbser AU - Ts. Sarantuya TI - Complete Riemann solvers for the hyperbolic GPR model of continuum mechanics JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2021 SP - 60 EP - 72 VL - 35 UR - http://geodesic.mathdoc.fr/item/IIGUM_2021_35_a4/ LA - en ID - IIGUM_2021_35_a4 ER -
%0 Journal Article %A U. Ariunaa %A M. Dumbser %A Ts. Sarantuya %T Complete Riemann solvers for the hyperbolic GPR model of continuum mechanics %J The Bulletin of Irkutsk State University. Series Mathematics %D 2021 %P 60-72 %V 35 %U http://geodesic.mathdoc.fr/item/IIGUM_2021_35_a4/ %G en %F IIGUM_2021_35_a4
U. Ariunaa; M. Dumbser; Ts. Sarantuya. Complete Riemann solvers for the hyperbolic GPR model of continuum mechanics. The Bulletin of Irkutsk State University. Series Mathematics, Tome 35 (2021), pp. 60-72. http://geodesic.mathdoc.fr/item/IIGUM_2021_35_a4/
[1] Castro M., Gallardo J., Parés C., “High-order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems”, Mathematics of Computations, 75 (2006), 1103–1134 | DOI
[2] Dumbser M., Balsara D. S., “A new effcient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems”, J. Comp. Phys., 304 (2016), 275–319 | DOI
[3] Dumbser M., Peshkov I., Romenski E., Zanotti O., “High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids”, J. Comp. Phys., 314 (2016), 824–862 | DOI
[4] Dumbser M., Toro E. F., “A simple extension of the Osher Riemann solver to non conservative hyperbolic systems”, J. Sci. Comput., 48 (2011), 70–88 | DOI
[5] Dumbser M., Uuriintsetseg A., Zanotti O., “On Arbitrary-Lagrangian-Eulerian one-step WENO schemes for stiff hyperbolic balance laws”, Communications in Computational Physics, 14 (2013), 301–327 | DOI
[6] Jackson H., “A fast numerical scheme for the Godunov-Peshkov-Romenski model of continuum mechanics”, Journal of Computational Physics, 348 (2017), 514–533 | DOI
[7] Osher S., Solomon F., “Upwind difference schemes for hyperbolic conservation laws”, Math. Comput., 38 (1982), 339–374 | DOI
[8] Parés C., “Numerical methods for nonconservative hyperbolic systems: A theoretical framework”, SIAM Journal on Numerical Analysis, 44 (2006), 300–321 | DOI
[9] Peshkov I., Romenski E., “A hyperbolic model for viscous newtonian flows”, Contin. Mech. Thermodyn., 28 (2016), 85–104 | DOI
[10] Walter B., Dumbser M., Loubére R., “Cell centered direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes for nonlinear hyperelasticity”, Computers and Fluids, 134–135 (2016), 111–129 | DOI