@article{IIGUM_2021_35_a3,
author = {A. D. Ovsyannikov and A. I. Shlokova and A. A. Komarova},
title = {Construction of stability regions in the parameter space in a penning trap with a rotating electric field},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {49--59},
year = {2021},
volume = {35},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2021_35_a3/}
}
TY - JOUR AU - A. D. Ovsyannikov AU - A. I. Shlokova AU - A. A. Komarova TI - Construction of stability regions in the parameter space in a penning trap with a rotating electric field JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2021 SP - 49 EP - 59 VL - 35 UR - http://geodesic.mathdoc.fr/item/IIGUM_2021_35_a3/ LA - ru ID - IIGUM_2021_35_a3 ER -
%0 Journal Article %A A. D. Ovsyannikov %A A. I. Shlokova %A A. A. Komarova %T Construction of stability regions in the parameter space in a penning trap with a rotating electric field %J The Bulletin of Irkutsk State University. Series Mathematics %D 2021 %P 49-59 %V 35 %U http://geodesic.mathdoc.fr/item/IIGUM_2021_35_a3/ %G ru %F IIGUM_2021_35_a3
A. D. Ovsyannikov; A. I. Shlokova; A. A. Komarova. Construction of stability regions in the parameter space in a penning trap with a rotating electric field. The Bulletin of Irkutsk State University. Series Mathematics, Tome 35 (2021), pp. 49-59. http://geodesic.mathdoc.fr/item/IIGUM_2021_35_a3/
[1] Vladimirova L., “Multicriteria Optimization of Beam Dynamics”, The Bulletin of Irkutsk State University. Series Mathematics, 7 (2014), 3–18 (in Russian)
[2] Eseev M. K., Meshkov I. N., “Traps for storing charged particles and antiparticles in high precision experiments”, Physics-Uspekhi, 59:3 (2016), 304–317 | DOI | DOI
[3] Meshkov I. N., Ovsyannikov A. D., Ovsyannikov D. A., Eseev M. K., “Study of the stability of charged particle dynamics in a Penning-Malmberg-Surko trap with a rotating field”, Doklady Physics, 62:10 (2017), 457–460 | DOI | DOI
[4] Ovsyannikov A. D., “Analysis of the dynamics of charged particles in an ideal Penning trap with a rotating field and a buffer gas”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:1 (2019), 62–75 (in Russian) | DOI
[5] Ovsyannikov A. D., Mathematical models of optimization of beam dynamics, VVM Publ, Saint Petersburg, 2014, 181 pp. (in Russian)
[6] Ovsyannikov A. D., Raikonen M. A., “Algorithm of approximate calculation of multiplicators for one periodic system”, Vestnik of the Saint Petersburg State University of technology and design. Series 1. Natural and technical Sciences, 2017, no. 3, 10–14 (in Russian)
[7] Ovsyannikov D. A., Modeling and optimization of charged particle beam dynamics, LGU Publ, Leningrad, 1990, 312 pp. (in Russian)
[8] Hasegava T., Jensen M. J., Bollinger J. J., “Stability of a Penning trap with a quadrupole rotating field”, Phys. Rev. A, 71:2 (2005), 023406 | DOI
[9] Isaac C. A., “Motional sideband excitation using rotating electric fields”, Phys. Rev. A, 87:4 (2013), 043415 | DOI
[10] C. A. Isaac et al., “Compression of positron clouds in the independent particle regime”, Phys. Rev. Lett., 107:3 (2011), 7 pp. | DOI
[11] I. N. Meshkov et al., “Analysis of the particle dynamics stability in the Penning-Malmberg-Surko trap”, Proc. XXV Russian Particle Accelerator Conference, RuPAC 2016 (Saint Petersburg, 2016), 64–66 | DOI
[12] A. D. Ovsyannikov et al., “Analysis and Modeling of the Charged Particle Beam Dynamics in the Charlton Trap”, Phys. Part. Nuclei Lett., 15 (2018), 754–757 | DOI