@article{IIGUM_2021_35_a2,
author = {G. D. Baybulatova and M. V. Plekhanova},
title = {An initial problem for a class of weakly degenerate semilinear equations with lower order fractional derivatives},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {34--48},
year = {2021},
volume = {35},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2021_35_a2/}
}
TY - JOUR AU - G. D. Baybulatova AU - M. V. Plekhanova TI - An initial problem for a class of weakly degenerate semilinear equations with lower order fractional derivatives JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2021 SP - 34 EP - 48 VL - 35 UR - http://geodesic.mathdoc.fr/item/IIGUM_2021_35_a2/ LA - en ID - IIGUM_2021_35_a2 ER -
%0 Journal Article %A G. D. Baybulatova %A M. V. Plekhanova %T An initial problem for a class of weakly degenerate semilinear equations with lower order fractional derivatives %J The Bulletin of Irkutsk State University. Series Mathematics %D 2021 %P 34-48 %V 35 %U http://geodesic.mathdoc.fr/item/IIGUM_2021_35_a2/ %G en %F IIGUM_2021_35_a2
G. D. Baybulatova; M. V. Plekhanova. An initial problem for a class of weakly degenerate semilinear equations with lower order fractional derivatives. The Bulletin of Irkutsk State University. Series Mathematics, Tome 35 (2021), pp. 34-48. http://geodesic.mathdoc.fr/item/IIGUM_2021_35_a2/
[1] Bajlekova E. G., Fractional evolution equations in Banach spaces, PhD thesis, Eindhoven University of Technology, University Press Facilities, Eindhoven, 2001 | DOI
[2] Debbouche A., Torres D. F.M., “Sobolev type fractional dynamic equations and optimal multi-integral controls with fractional nonlocal conditions”, Fractional Calculus and Applied Analysis, 18 (2015), 95–121 | DOI
[3] Demidenko G. V., Uspensky S. V., Equations and systems not resolved with respect to the highest derivative, Scientific book Publ, Novosibirsk, 1998, 438+xviii pp. (in Russian)
[4] Falaleev M. V., “On Solvability in the Class of Distributions of Degenerate Integro-Differential Equations in Banach Spaces”, The Bulletin of Irkutsk State University. Series Mathematics, 34 (2020), 77–92 (in Russian) | DOI
[5] Fedorov V. E., Gordievskikh D. M., “Resolving operators of degenerate evolution equations with fractional derivative with respect to time”, Russian Mathematics, 59 (2015), 60–70 | DOI
[6] Fedorov V. E., Gordievskikh D. M., Plekhanova M. V., “Equations in Banach spaces with a degenerate operator under a fractional derivative”, Differential Equations, 51 (2015), 1360–1368 | DOI
[7] Fedorov V. E., Phuong T. D., Kien B. T., Boyko K. V., Izhberdeeva E. M., “A class of distributed order semilinear equations”, Chelyabinsk Physical and Mathematical Journal, 5:3 (2020), 343–351 (in Russian) | DOI
[8] Fedorov V. E., Plekhanova M. V., Nazhimov R. R., “Degenerate linear evolution equations with the Riemann – Liouville fractional derivative”, Siberian Math. J., 59:1 (2018), 136–146 | DOI
[9] Fedorov V. E., Romanova E. A., Debbouche A., “Analytic in a sector resolving families of operators for degenerate evolution fractional equations”, Journal of Mathematical Sciences, 228:4 (2018), 380–394 | DOI
[10] Glushak A. V., Avad Kh.K., “On the solvability of an abstract differential equation of fractional order with a variable operator”, Sovrem. maths. Foundation. Directions, 47, 2013, 18–32 (in Russian)
[11] Hassard B. D., Kazarinoff N. D., Wan Y.-H., Theory and applications of hopf bifurcation, Cambridge University Press, Cambridge–London, 1981
[12] Kostić M., Abstract Volterra integro-differential equations, CRC Press, Boca Raton, FL, 2015, 484 pp.
[13] Mainardi F., Paradisi F., “Fractional diffusive waves”, Journal of Computational Acoustics, 9:4 (2001), 1417–1436 | DOI
[14] Mainardi F., Spada G., “Creep, Relaxation and viscosity properties for basic fractional models in rheology”, The European Physical Journal Special Topics, 193 (2011), 133–160 | DOI
[15] Plekhanova M. V., “Nonlinear equations with degenerate operator at fractional Caputo derivative”, Mathematical Methods in the Applied Sciences, 40 (2016), 41–44 | DOI
[16] Plekhanova M. V., “Sobolev type equations of time-fractional order with periodical boundary conditions”, AIP Conf. Proc., 1759 (2016), 020101, 4 pp. | DOI
[17] Plekhanova M. V., Baybulatova G. D., “A class of semilinear degenerate equations with fractional lower order derivatives”, Stability, Control, Differential Games, SCDG 2019, Proceedings of the International Conference devoted to the 95th anniversary of Academician N. N. Krasovskii (Yekaterinburg, Russia, 16–20 September 2019), eds. T.F. Filippova, V.T. Maksimov, A.M. Tarasyev, 2019, 444–448 | DOI
[18] Plekhanova M. V., Baybulatova G. D., “Semilinear equations in Banach spaces with lower fractional derivatives”, Nonlinear Analysis and Boundary Value Problems, NABVP 2018 (Santiago de Compostela, Spain, September 4–7), Springer Proceedings in Mathematics and Statistics, 292, eds. I. Area, A. Cabada, J.A. Cid, etc., Springer Nature Switzerland AG, Cham, 2019, 81–93, xii+298 pp. | DOI
[19] Pruss J., Evolutionary Integral Equations and Applications, Birkhauser-Verlag, Basel, 1993, 366 pp.
[20] Sidorov N. A., Loginov B. V., Sinitsyn A. V., Falaleev M. V., Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications, Kluwer Academic Publishers, Dordrecht, 2002 | DOI
[21] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu.D., Linear and nonlinear equations of Sobolev type, Fizmatlit Publ, M., 2007, 736 pp. (in Russian)
[22] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, 216 pp. | DOI
[23] Uchaikin V. V., “Fractional phenomenology of cosmic ray anomalous diffusion”, Physics-Uspekhi, 56:11 (2013), 1074–1119 | DOI