Mots-clés : convolution
@article{IIGUM_2020_34_a5,
author = {M. V. Falaleev},
title = {On solvability in the class of distributions of degenerate integro-differential equations in {Banach} spaces},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {77--92},
year = {2020},
volume = {34},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2020_34_a5/}
}
TY - JOUR AU - M. V. Falaleev TI - On solvability in the class of distributions of degenerate integro-differential equations in Banach spaces JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2020 SP - 77 EP - 92 VL - 34 UR - http://geodesic.mathdoc.fr/item/IIGUM_2020_34_a5/ LA - ru ID - IIGUM_2020_34_a5 ER -
%0 Journal Article %A M. V. Falaleev %T On solvability in the class of distributions of degenerate integro-differential equations in Banach spaces %J The Bulletin of Irkutsk State University. Series Mathematics %D 2020 %P 77-92 %V 34 %U http://geodesic.mathdoc.fr/item/IIGUM_2020_34_a5/ %G ru %F IIGUM_2020_34_a5
M. V. Falaleev. On solvability in the class of distributions of degenerate integro-differential equations in Banach spaces. The Bulletin of Irkutsk State University. Series Mathematics, Tome 34 (2020), pp. 77-92. http://geodesic.mathdoc.fr/item/IIGUM_2020_34_a5/
[1] Weinberg M. M., Trenogin V. A., Theory of branching solutions of nonlinear equations, Nauka Publ, M., 1969, 520 pp. (in Russian)
[2] Vladimirov V. S., Generalized functions in mathematical physics, Nauka Publ, M., 1979, 512 pp. (in Russian)
[3] Loginov B. V., Rusak Y. B., “The Generalized Jordanova structure in branching theory”, Direct and inverse problems for partial differential equations and their applications, FAN, Tashkent, 1978, 133–148 (in Russian)
[4] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu.D., Linear and nonlinear Sobolev type equations, Nauka Publ, M., 2007, 736 pp. (in Russian)
[5] Sidorov N. A., Romanova O. A., “On the application of some results of the branch theory in solving differential equations with degeneracy”, Differential equations, 19:9 (1983), 1516–1526 (in Russian) | MR | Zbl
[6] Sidorov N. A., Falaleev M. V., “Generalized solutions of differential equations with a Fredholm operator for a derivative”, Differential equations, 23:4 (1987), 726–728 (in Russian) | Zbl
[7] Falaleev M. V., Orlov S. S., “Degenerate integro-differential operators in Banach spaces and their applications”, Izvestiya vuzov. Mathematics, 2011, no. 10, 68–79 (in Russian) | Zbl
[8] Falaleev M. V., Orlov S. S., “Integro-differential equations with degeneracy in Banach spaces and their applications in the mathematical theory of elasticity”, The Bulletin of Irkutsk State University. Series Mathematics, 4:1 (2011), 118–134 (in Russian) | Zbl
[9] Falaleev M. V., Orlov S. S., “Generalized solutions of degenerate integro-differential equations in Banach spaces and their applications”, Proceedings of the Institute of mathematics and mechanics of the Ural Branch of the Russian Academy of Sciences, 18:4 (2012), 286–297 (in Russian)
[10] Rivera J. E. M., Fatori L. H., “Regularizing Properties and Propagations of Singularities for Thermoelastic Plates”, Math. Meth. Appl. Sci., 21 (1998), 797–821 | 3.0.CO;2-D class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[11] N. Sidorov, B. Loginov, A. Sinitsyn, M. Falaleev, Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications, Kluwer Academic Publishers, Dordrecht, 2002, 540 pp. | DOI | MR | Zbl