The role of a priori estimates in the method of non-local continuation of solution by parameter
The Bulletin of Irkutsk State University. Series Mathematics, Tome 34 (2020), pp. 67-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An iterative method for continuation of solutions with respect to a parameter is proposed. The nonlocal case is studied when the parameter belongs to the segment of the real axis. An iterative scheme for continuing the solution is constructed for a linear equation in Banach spaces with a linear operator continuously depending on the parameter, satisfying the Lipschitz condition with respect to the parameter. The generalization of this result on a nonlinear equation in Banach spaces is proposed. The iterative scheme of the method of continuation of the solution by parameter using the Newton-Kantorovich method is constructed. An priori estimates of solutions enable solution construction for arbitrary parameters.
Keywords: global solvability, parameter continuation method, homotopy analysis method, Newton-Kantorovich method, operator equation, uniqueness of solution.
@article{IIGUM_2020_34_a4,
     author = {N. A. Sidorov},
     title = {The role of a priori estimates in the method of non-local continuation of solution by parameter},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {67--76},
     year = {2020},
     volume = {34},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2020_34_a4/}
}
TY  - JOUR
AU  - N. A. Sidorov
TI  - The role of a priori estimates in the method of non-local continuation of solution by parameter
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2020
SP  - 67
EP  - 76
VL  - 34
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2020_34_a4/
LA  - ru
ID  - IIGUM_2020_34_a4
ER  - 
%0 Journal Article
%A N. A. Sidorov
%T The role of a priori estimates in the method of non-local continuation of solution by parameter
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2020
%P 67-76
%V 34
%U http://geodesic.mathdoc.fr/item/IIGUM_2020_34_a4/
%G ru
%F IIGUM_2020_34_a4
N. A. Sidorov. The role of a priori estimates in the method of non-local continuation of solution by parameter. The Bulletin of Irkutsk State University. Series Mathematics, Tome 34 (2020), pp. 67-76. http://geodesic.mathdoc.fr/item/IIGUM_2020_34_a4/

[1] Vainberg M. M., Trenogin V. A., Theory of branching of solutions of nonlinear equations, Wolters-Noordhoff B.V., Groningen, 1964, 510 pp. | MR

[2] Gorbunov V. K., L'vov A. G., “The Construction of Production Functions Using Investment Data”, Ekonom. i Matem. Metody, 48:2 (2012), 95–107 (in Russian)

[3] Korpusov M. O., Panin A. A., Lectures on linear and nonlinear functional analysis, v. 3, Nonlinear classes, Physics Faculty MSU Publ., M., 2016, 259 pp. (in Russian)

[4] Krasnosel'skii M. A., Topological methods in the theory of nonlinear integral equations, Pergamon Press, Oxford–London–New York–Paris, 1964, 395 pp. | MR | MR | Zbl

[5] Loginov B. V., Branching solutions theory of nonlinear equations under group invariance conditions, FAN Publ., Tashkent, 1985, 185 pp. (in Russian)

[6] Lusternik L. A., “Some issues of nonlinear functional analysis”, Russian math. surveys, 6:11 (1956), 145–168 | MR | Zbl

[7] Trénoguine V. A., Analyse fonctionnelle, traduit du russe par V. Kotliar, Mir Publ., M., 1985 | MR

[8] Fedorov A. A., Berdnikov A. S., Kurochkin V. E., “The polymerase chain reaction model analyzed by the homotopy perturbation method”, Journal of Mathematical Chemistry, 57 (2019), 971–985 | DOI | MR | Zbl

[9] He J. H., “Homotopy perturbation technique”, Comp. Meth. Appl. Mech. Engrg., 178 (1999), 257–262 | DOI | MR | Zbl

[10] He J. H., “Homotopy perturbation method: a new nonlinear analytical technique”, Applied Mathematics and Computation, 135:1 (2003), 73–79 | DOI | MR | Zbl

[11] Liao S., “On the homotopy analysis method for nonlinear problems”, Applied Mathematics and Computation, 147:2 (2004), 499–513 | DOI | MR | Zbl

[12] Loginov B. V., Sidorov N. A., “Group symmetry of the Lyapunov-Schmidt branching equation and interative methods in the problem of a bifurcation point”, Mathematics of the USSR-Sbornik, 73:1 (1992), 67–77 | DOI | MR | Zbl

[13] S. Noeiaghdam, A. Dreglea, J. He, Z. Avazzadeh, M. Suleman, M. A. F. Araghi, D. N. Sidorov, N. A. Sidorov, “Error estimation of the homotopy perturbation method to solve second kind Volterra integral equations with piecewise smooth kernels: application of the CADNA library”, Symmetry, 12:10 (2020), 1730, 1–20 | DOI

[14] Sidorov N. A., Sidorov D. N., Dreglea A. I., “Solvability and bifurcation of solutions of nonlinear equations with Fredholm operator”, Symmetry, 12:6 (2020), 912 | DOI

[15] Sidorov N. A., Trufanov V. A., “Nonlinear operator equations with a functional perturbation of the argument of neutral type”, Differential Equations, 45 (2009), 1840–1844 | DOI | MR | Zbl

[16] Sidorov N. A., “A class of degenerate differential equations with convergence”, Mathematical Notes of the Academy of Sciences of the USSR, 35 (1984), 300–305 | DOI | MR | Zbl

[17] Sidorov N. A., Sidorov D. N., Krasnik A. V., “Solution of Volterra operator-integral equations in the nonregular case by the successive approximation method”, Differential Equations, 46 (2010), 882–889 | DOI | MR

[18] Sidorov N. A., Sidorov D. N., Sinitsyn A. V., Toward general theory of differential-operator and kinetic models, World Scientific Series on Nonlinear Science Series A, 97, ed. L. Chua, World Scientific, S'pore, 2020, 400 pp. | DOI | MR | Zbl

[19] Sidorov D. N., Sidorov N. A., “Solution of irregular systems of partial differential equations using skeleton decomposition of linear operators”, South Ural State University Bulletin. Series Mathematical Modelling, Programming Computer Software, 10:2 (2017), 63–73 | DOI | Zbl

[20] Sidorov N. A., Leont'ev R. Yu., Dreglea A. I., “On small solutions of nonlinear equations with vector parameter in sectorial neighborhoods”, Mathematical Notes, 91 (2012), 90–104 | DOI | MR | Zbl

[21] Trenogin V. A., “Locally invertible operators and the method of continuation with respect to parameter”, Functional Analysis and its Applications, 30:2 (1996), 93–95 | DOI | MR | Zbl