Antiperiodic boundary value problem for a semilinear differential equation of fractional order
The Bulletin of Irkutsk State University. Series Mathematics, Tome 34 (2020), pp. 51-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The present paper is concerned with an antiperiodic boundary value problem for a semilinear differential equation with Caputo fractional derivative of order $ q \in (1,2) $ considered in a separable Banach space. To prove the existence of a solution to our problem, we construct the Green's function corresponding to the problem employing the theory of fractional analysis and properties of the Mittag-Leffler function . Then, we reduce the original problem to the problem on existence of fixed points of a resolving integral operator. To prove the existence of fixed points of this operator we investigate its properties based on topological degree theory for condensing mappings and use a generalized B.N. Sadovskii-type fixed point theorem.
Keywords: Caputo fractional derivative, semilinear differential equation, boundary value problem, fixed point, condensing mapping, measure of noncompactness.
@article{IIGUM_2020_34_a3,
     author = {G. G. Petrosyan},
     title = {Antiperiodic boundary value problem for a semilinear differential equation of fractional order},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {51--66},
     year = {2020},
     volume = {34},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2020_34_a3/}
}
TY  - JOUR
AU  - G. G. Petrosyan
TI  - Antiperiodic boundary value problem for a semilinear differential equation of fractional order
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2020
SP  - 51
EP  - 66
VL  - 34
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2020_34_a3/
LA  - en
ID  - IIGUM_2020_34_a3
ER  - 
%0 Journal Article
%A G. G. Petrosyan
%T Antiperiodic boundary value problem for a semilinear differential equation of fractional order
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2020
%P 51-66
%V 34
%U http://geodesic.mathdoc.fr/item/IIGUM_2020_34_a3/
%G en
%F IIGUM_2020_34_a3
G. G. Petrosyan. Antiperiodic boundary value problem for a semilinear differential equation of fractional order. The Bulletin of Irkutsk State University. Series Mathematics, Tome 34 (2020), pp. 51-66. http://geodesic.mathdoc.fr/item/IIGUM_2020_34_a3/

[1] Afanasova M., Petrosyan G., “On the boundary value problem for functional-differential inclusion of fractional order with general initial condition in a Banach space”, Russian Mathematics, 63:9 (2019), 1–12 | DOI | DOI | MR | Zbl

[2] Agarwal R. P., Ahmad B., “Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions”, Computers and Mathematics with Applications, 62 (2011), 1200–1214 | DOI | MR | Zbl

[3] Ahmad B., Nieto J. J., “Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory”, Topological Methods in Nonlinear Analysis, 35 (2010), 295–304 | MR | Zbl

[4] Bogdan V. M., Generalized vectorial Lebesgue and Bochner integration theory, 2010, 86 pp., arXiv: 1006.3881v1 [math.FA]

[5] Chen Y., Nieto J. J., O'Regan D., “Antiperiodic solutions for fully nonlinear first-order differential equations”, Math. Comput. Modelling, 46 (2007), 1183–1190 | DOI | MR | Zbl

[6] Delvos F. J., Knoche L., “Lacunary interpolation by antiperiodic trigonometric polynomials”, BIT, 39 (1999), 439–450 | DOI | MR | Zbl

[7] Fichtenholz G. M., Course in Differential and Integral Calculus, v. 1, Fizmatlit Publ., M., 2006, 607 pp. (in Russian)

[8] Gorenflo R., Kilbas A. A., Mainardi F., Rogosin S. V., Mittag-Leffler Functions, Related Topics and Applications, Springer-Verlag, Berlin–Heidelberg, 2014, 443 pp. | MR | Zbl

[9] Hilfer R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000, 472 pp. | MR | Zbl

[10] Kamenskii M., Obukhovskii V., Zecca P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter Series in Nonlinear Analysis and Applications, 7, Walter de Gruyter, Berlin–New-York, 2001, 231 pp. | MR

[11] Kamenskii M., Obukhovskii V., Petrosyan G., Yao J. C., “On semilinear fractional order differential inclusions in Banach spaces”, Fixed Point Theory, 18:1 (2017), 269–292 | DOI | MR | Zbl

[12] Kamenskii M., Obukhovskii V., Petrosyan G., Yao J. C., “On approximate solutions for a class of semilinear fractional-order differential equations in Banach spaces”, Fixed Point Theory and Applications, 28:4 (2017), 1–28 | DOI | MR

[13] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier Science B. V., Amsterdam, 2006, 523 pp. | MR | Zbl

[14] Obukhovskii V. V., Gelman B. D., Multivalued Maps and Differential Inclusions. Elements of Theory and Applications, World Scientific, Singapore, 2020, 220 pp. | Zbl

[15] Podlubny I., Fractional Differential Equations, Academic Press, San Diego, 1999, 340 pp. | MR | Zbl

[16] Shao J., “Anti-periodic solutions for shunting inhibitory cellular neural networks with time-varying delays”, Phys. Lett. A, 372 (2008), 5011–5016 | DOI | MR | Zbl

[17] Tarasov V. E., Fractional Dynamics. Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, London–New York, 2010, 504 pp. | MR | Zbl