@article{IIGUM_2020_34_a3,
author = {G. G. Petrosyan},
title = {Antiperiodic boundary value problem for a semilinear differential equation of fractional order},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {51--66},
year = {2020},
volume = {34},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2020_34_a3/}
}
TY - JOUR AU - G. G. Petrosyan TI - Antiperiodic boundary value problem for a semilinear differential equation of fractional order JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2020 SP - 51 EP - 66 VL - 34 UR - http://geodesic.mathdoc.fr/item/IIGUM_2020_34_a3/ LA - en ID - IIGUM_2020_34_a3 ER -
%0 Journal Article %A G. G. Petrosyan %T Antiperiodic boundary value problem for a semilinear differential equation of fractional order %J The Bulletin of Irkutsk State University. Series Mathematics %D 2020 %P 51-66 %V 34 %U http://geodesic.mathdoc.fr/item/IIGUM_2020_34_a3/ %G en %F IIGUM_2020_34_a3
G. G. Petrosyan. Antiperiodic boundary value problem for a semilinear differential equation of fractional order. The Bulletin of Irkutsk State University. Series Mathematics, Tome 34 (2020), pp. 51-66. http://geodesic.mathdoc.fr/item/IIGUM_2020_34_a3/
[1] Afanasova M., Petrosyan G., “On the boundary value problem for functional-differential inclusion of fractional order with general initial condition in a Banach space”, Russian Mathematics, 63:9 (2019), 1–12 | DOI | DOI | MR | Zbl
[2] Agarwal R. P., Ahmad B., “Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions”, Computers and Mathematics with Applications, 62 (2011), 1200–1214 | DOI | MR | Zbl
[3] Ahmad B., Nieto J. J., “Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory”, Topological Methods in Nonlinear Analysis, 35 (2010), 295–304 | MR | Zbl
[4] Bogdan V. M., Generalized vectorial Lebesgue and Bochner integration theory, 2010, 86 pp., arXiv: 1006.3881v1 [math.FA]
[5] Chen Y., Nieto J. J., O'Regan D., “Antiperiodic solutions for fully nonlinear first-order differential equations”, Math. Comput. Modelling, 46 (2007), 1183–1190 | DOI | MR | Zbl
[6] Delvos F. J., Knoche L., “Lacunary interpolation by antiperiodic trigonometric polynomials”, BIT, 39 (1999), 439–450 | DOI | MR | Zbl
[7] Fichtenholz G. M., Course in Differential and Integral Calculus, v. 1, Fizmatlit Publ., M., 2006, 607 pp. (in Russian)
[8] Gorenflo R., Kilbas A. A., Mainardi F., Rogosin S. V., Mittag-Leffler Functions, Related Topics and Applications, Springer-Verlag, Berlin–Heidelberg, 2014, 443 pp. | MR | Zbl
[9] Hilfer R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000, 472 pp. | MR | Zbl
[10] Kamenskii M., Obukhovskii V., Zecca P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter Series in Nonlinear Analysis and Applications, 7, Walter de Gruyter, Berlin–New-York, 2001, 231 pp. | MR
[11] Kamenskii M., Obukhovskii V., Petrosyan G., Yao J. C., “On semilinear fractional order differential inclusions in Banach spaces”, Fixed Point Theory, 18:1 (2017), 269–292 | DOI | MR | Zbl
[12] Kamenskii M., Obukhovskii V., Petrosyan G., Yao J. C., “On approximate solutions for a class of semilinear fractional-order differential equations in Banach spaces”, Fixed Point Theory and Applications, 28:4 (2017), 1–28 | DOI | MR
[13] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier Science B. V., Amsterdam, 2006, 523 pp. | MR | Zbl
[14] Obukhovskii V. V., Gelman B. D., Multivalued Maps and Differential Inclusions. Elements of Theory and Applications, World Scientific, Singapore, 2020, 220 pp. | Zbl
[15] Podlubny I., Fractional Differential Equations, Academic Press, San Diego, 1999, 340 pp. | MR | Zbl
[16] Shao J., “Anti-periodic solutions for shunting inhibitory cellular neural networks with time-varying delays”, Phys. Lett. A, 372 (2008), 5011–5016 | DOI | MR | Zbl
[17] Tarasov V. E., Fractional Dynamics. Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, London–New York, 2010, 504 pp. | MR | Zbl