@article{IIGUM_2020_34_a2,
author = {P. S. Petrenko},
title = {Controllability of a singular hybrid system},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {35--50},
year = {2020},
volume = {34},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2020_34_a2/}
}
P. S. Petrenko. Controllability of a singular hybrid system. The Bulletin of Irkutsk State University. Series Mathematics, Tome 34 (2020), pp. 35-50. http://geodesic.mathdoc.fr/item/IIGUM_2020_34_a2/
[1] Barton P. I., Lee C. K., “Modeling, simulation, sensitivity analysis and optimization of hybrid systems”, ACM Transactions Modeling Comput. Simulation, 12:4 (2002), 256–289 | DOI | Zbl
[2] Bemborad A., Ferrari-Trecate G., Morari M., “Observability and controllability of piecewise affine and hybrid systems”, IEEE Trans. Automat. Control, 45:10 (2000), 1864–1876 | DOI | MR
[3] Boyarintsev Ju.E., Methods of solution for degenerate systems of ordinary differential equations, Nauka Publ., Novosibirsk, 1988, 158 pp. (in Russian)
[4] Boyarintsev Ju.E., Regular and Singular Systems of Linear Ordinary Differential Equations, Nauka Siberian Branch Publ., Novosibirsk, 1980, 222 pp. (in Russian)
[5] Dai L., Singular control system, Lecture notes in control and information sciences, 118, Springer-Verlag, Berlin–Heidelberg, 1989, 332 pp. | DOI | MR
[6] Gantmacher F. R., The theory of matrices, Nauka Publ., M., 1988, 548 pp. (in Russian) | MR
[7] Kunkel P., Mehrmann W. L., Differential-algebraic equations: analysis and numerical solutions, European Mathematical Society, Zurich, Switzerland, 2006, 377 pp. | MR
[8] Leontyev V. V., Interindustry Economics, Ekonomika Publ., M., 1990, 415 pp. (in Russian)
[9] Marchenko V. M., Borkovskaya I. M., Pyzhkova O. N., “The stability of hybrid dynamic 2-D-systems”, Proceedings of BSTU, 2016, no. 6, 5–9 (in Russian)
[10] Mehrmann V., Stykel T., “Descriptor systems: a general mathematical framework for modelling, simulation and control”, Automatisierungstechnik, 54:8 (2006), 405–415 | DOI
[11] Petrenko P. S., “Differential controllability of linear systems of differential-algebraic equations”, Journal of Siberian Federal University. Mathematics Physics, 10:3 (2017), 320–329 | DOI | MR
[12] Petrenko P. S., “To the question on controllability of a singular hybrid system”, Materialy Mezhdunarodnoy konferentsii “Ustoychivost', upravleniye, differentsial'nyye igry”, SCDG 2019 (Ekaterinburg, Russia, 2019), 2019, 251–255 (in Russian)
[13] Petrenko P. S., “To the question on solvability of a singular hybrid system”, Materialy mezhd. simpoziuma “Dinam. sistemy, optim. upravleniye i matem. modelirovaniye” (Irkutsk, Russia, 2019), 163–166 (in Russian)
[14] Rondepierre A., “Piecewise affine systems controllability and hybrid optimal control”, Proc. Int. Conf. Inform. Control, Automat. Robot, ICINCO (Barselone, Spain, 2005), 294–302
[15] Shcheglova A. A., “Duality of the notions of controllability and observability for degenerate linear hybrid systems”, Autom. Remote Control, 67:9 (2006), 1445–1465 | DOI | MR | Zbl
[16] Shcheglova A. A., “Observability of the hybrid linear systems with constant coefficients”, Autom. Remote Control, 65:11 (2004), 1767–1781 | DOI | MR | Zbl
[17] Shcheglova A. A., “The solvability of the initial problem for a degenerate linear hybrid system with variable coefficients”, Russian Math. (Iz. VUZ), 54:9 (2010), 49–61 | DOI | MR | Zbl
[18] Van der Schaft A., Schumacher H., An introduction to hybrid dynamical systems, Springer, London, 2000, 174 pp. | MR | Zbl
[19] Vidal R., Chiuso A., So atto St., Sastry Sh., “Observability of linear hybrid systems”, Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, 2623, Springer, Berlin–Heidelberg, 2003, 526–539 | DOI | Zbl