Mots-clés : exact solution
@article{IIGUM_2020_34_a1,
author = {A. L. Kazakov and L. F. Spevak},
title = {Approximate and exact solutions to the singular nonlinear heat equation with a common type of nonlinearity},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {18--34},
year = {2020},
volume = {34},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2020_34_a1/}
}
TY - JOUR AU - A. L. Kazakov AU - L. F. Spevak TI - Approximate and exact solutions to the singular nonlinear heat equation with a common type of nonlinearity JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2020 SP - 18 EP - 34 VL - 34 UR - http://geodesic.mathdoc.fr/item/IIGUM_2020_34_a1/ LA - ru ID - IIGUM_2020_34_a1 ER -
%0 Journal Article %A A. L. Kazakov %A L. F. Spevak %T Approximate and exact solutions to the singular nonlinear heat equation with a common type of nonlinearity %J The Bulletin of Irkutsk State University. Series Mathematics %D 2020 %P 18-34 %V 34 %U http://geodesic.mathdoc.fr/item/IIGUM_2020_34_a1/ %G ru %F IIGUM_2020_34_a1
A. L. Kazakov; L. F. Spevak. Approximate and exact solutions to the singular nonlinear heat equation with a common type of nonlinearity. The Bulletin of Irkutsk State University. Series Mathematics, Tome 34 (2020), pp. 18-34. http://geodesic.mathdoc.fr/item/IIGUM_2020_34_a1/
[1] Kazakov A. L., “Solutions to a heat wave propagation boundary-value problem for a nonlinear heat equation”, Sib. Electronic Math. Reports, 16 (2019), 1057–1068 (in Russian) | DOI | Zbl
[2] Kazakov A. L., Kuznetsov P. A., Spevak L. F., “On a Degenerate Boundary Value Problem for the Porous Medium Equation in Spherical Coordinates”, Trudy Instituta matematiki i mehaniki UrO RAN, 20, no. 1, 2014, 119–129 (in Russian)
[3] Kazakov A. L., Lempert A. A., “Analytical and Numerical Investigation of a Nonlinear Filtration Boundary–Value Problem with Degeneration”, Vychislitel'nye tehnologii, 17:1 (2012), 57–68 (in Russian) | Zbl
[4] Kazakov A. L., Orlov S. S., “On some exact solutions of the nonlinear heat equation”, Trudy Instituta matematiki i mehaniki UrO RAN, 22, no. 1, 112–123 (in Russian)
[5] Kazakov A. L., Orlov S. S., Orlov S. S., “Construction and Study of Exact Solutions to a Nonlinear Heat Equation”, Sib. Math. J., 59:3 (2018), 427–441 | DOI | DOI | MR | Zbl
[6] Kazakov A. L., Spevak L. F., “Boundary Elements Method and Power Series Method for One-dimensional Nonlinear Filtration Problems”, The Bulletin of Irkutsk state University. Series Mathematics, 5:2 (2012), 2–17 (in Russian) | Zbl
[7] Korn G., Korn T., Mathematical Handbook, McGraw-Hill Book Company, NY, 1968, 1130 pp. | MR | MR
[8] Kosov A. A., Semenov E. I., “Exact solutions of the nonlinear diffusion equation”, Sib. Math. J., 60:1 (2019), 93–107 | DOI | DOI | MR | Zbl
[9] Ladyzenskaja O. A., Solonnikov V. A., Ural'ceva N. N., Linear and quasi-linear equations of parabolic type, American Mathematical Society, Providence, 1968, 648 pp. | MR
[10] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Blow-up in Quasilinear Parabolic Equations, Walter de Gruyte Berlin, NY, 1995, 534 pp. | MR | MR | Zbl
[11] Sidorov A. F., Selected Works: Mathematics. Mechanics, Fizmatlit Publ., M., 2001, 576 pp. (in Russian) | MR
[12] Filimonov M. Yu., “Representation of solutions of initial-boundary value problems for nonlinear partial differential equations by the method of special series”, Differential Equations, 39:8 (2003), 1159–1166 | DOI | MR | Zbl
[13] Antontsev S. N., Shmarev S. I., Evolution PDEs with nonstandard growth conditions. Existence, uniqueness, localization, blow-up, Atlantis Press, Paris, 2015, 409 pp. | DOI | MR | Zbl
[14] Banerjee P. K., Butterfield R., Boundary element methods in engineering science, McGraw-Hill Book Company, London, 1981, 494 pp. | MR | Zbl
[15] Divo E., Kassab A. J., “Transient non-linear heat conduction solution by a dual reciprocity boundary element method with an effective posteriori error estimator”, Comput. Mater. Contin., 2:4 (2005), 277–288 | DOI
[16] Golberg M. A., Chen C. S., Bowman H., “Some recent results and proposals for the use of radial basis functions in the BEM”, Eng. Anal. Boundary Elem., 23 (1999), 285–296 | DOI | Zbl
[17] Hardy R. L., “Multiquadric equations of topography and other irregular surfaces”, Journal of Geophys. Res., 76 (1971), 1905–1915 | DOI
[18] Kazakov A. L., Kuznetsov P. A., Spevak L. F., “Analytical and numerical construction of heat wave type solutions to the nonlinear heat equation with a source”, Journal of Math. Sciences, 239:1 (2019), 111–122 | DOI | MR | Zbl
[19] Murray J., Mathematical Biology, v. I, An Introduction, Springer, N.Y., 2002, 551 pp. | MR | Zbl
[20] Spevak L. F., Nefedova O. A., “Solving a two-dimensional nonlinear heat conduction equation with degeneration by the boundary element method with the application of the dual reciprocity method”, AIP Conf. Proc., 1785 (2016), 040077 | DOI
[21] Vazquez J. L., The Porous Medium Equation: Mathematical Theory, Clarendon Press, Oxford, 2007, 648 pp. | MR
[22] Wrobel L. C., Brebbia C. A., Nardini D., “The dual reciprocity boundary element formulation for transient heat conduction”, Finite elements in water resources VI, Springer-Verlag, Berlin, 1986, 801–811 | MR