@article{IIGUM_2020_33_a2,
author = {N. P. Chuev},
title = {The {Cauchy} problem for system of {Volterra} integral equations describing the motion of a finite mass of a self-gravitating gas},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {35--50},
year = {2020},
volume = {33},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2020_33_a2/}
}
TY - JOUR AU - N. P. Chuev TI - The Cauchy problem for system of Volterra integral equations describing the motion of a finite mass of a self-gravitating gas JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2020 SP - 35 EP - 50 VL - 33 UR - http://geodesic.mathdoc.fr/item/IIGUM_2020_33_a2/ LA - ru ID - IIGUM_2020_33_a2 ER -
%0 Journal Article %A N. P. Chuev %T The Cauchy problem for system of Volterra integral equations describing the motion of a finite mass of a self-gravitating gas %J The Bulletin of Irkutsk State University. Series Mathematics %D 2020 %P 35-50 %V 33 %U http://geodesic.mathdoc.fr/item/IIGUM_2020_33_a2/ %G ru %F IIGUM_2020_33_a2
N. P. Chuev. The Cauchy problem for system of Volterra integral equations describing the motion of a finite mass of a self-gravitating gas. The Bulletin of Irkutsk State University. Series Mathematics, Tome 33 (2020), pp. 35-50. http://geodesic.mathdoc.fr/item/IIGUM_2020_33_a2/
[1] Andreev V. K., Stability of unsteady fluid motions with a free boundary, Nauka Publ., Novosibirsk, 1992, 136 pp. (in Russian)
[2] Bogoiavlenskii O. I., “Dynamics of a gravitating gaseous ellipsoid”, J. Appl Math. Mech., 40 (1976), 246–256 | DOI
[3] Vasilieva A. B., Tikhonov N. A., Integral equations, Fizmatlit Publ., M., 2002, 160 pp. (in Russian)
[4] Gunter N. M., Potential theory and its application to the basic problems of mathematical physics, Gostehizdat Publ., M., 1953, 415 pp. (in Russian) | MR
[5] Kartashev A. P., Rozhdestvenskii B. L., Ordinary differential equations and fundamentals of the calculus of variations, Nauka Publ., M., 1979, 228 pp. (in Russian)
[6] Lamb H., Hydrodynamics, OGIZ Publ., M., 1947, 929 pp. (in Russian)
[7] Nikolsky S. M., A Course in Mathematical Analysis, v. II, Nauka Publ, M., 1983, 448 pp. (in Russian) | MR
[8] Ovsyannikov L. V., Lectures on the basics of gas dynamics, Institut kompyuternih issledovanii Publ., M.–Izhevsk, 2003, 336 pp. (in Russian) | MR
[9] Ovsyannikov L. V., General equations and examples, Nauka Publ., Novosibirsk, 1967, 75 pp. (in Russian)
[10] Smirnov N. S., Introduction to the theory of nonlinear integral equations, M.–L., 1936, 125 pp. (in Russian)
[11] Sretensky L. N., Theory of Newtonian potential, OGIZ Publ., M., 1946, 318 pp. (in Russian)
[12] Stanyukovich K. P., Unsteady motion of continuum media, Nauka Publ., M., 1971, 875 pp. (in Russian)
[13] Chandrasekhar S., Ellipsoidal figures of equilibrium, Mir Publ., M., 1973, 228 pp.
[14] Chuev N. P., “On the existence and uniqueness of a solution to a problem Cauchy for a system of integral equations describing the motion of a rarefied mass of a self-gravitating gas”, Journal of Computational Mathematics and Mathematical Physics, 60:4 (2020), 663–672 | DOI | Zbl
[15] Hartman F., Ordinary Differential Equations, Mir Publ, M., 1970, 720 pp. (in Russian)
[16] Evans L. C., Partial differential equations, Novosibirsk, 2003, 562 pp. (in Russian)