To the 70th anniversary of the birth of V. V. Bludov
The Bulletin of Irkutsk State University. Series Mathematics, Tome 32 (2020), pp. 124-133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to the scientific and pedagogical activity of the professor V. V. Bludov, whose 70th anniversary is celebrated in Februare 2020.
Keywords: linearly ordered groups, lattice-ordered groups, semi-uniformly ordered groups, right-ordered groups.
@article{IIGUM_2020_32_a9,
     author = {S. F. Vinokurov and V. I. Panteleev and N. A. Peryazev},
     title = {To the 70th anniversary of the birth of {V.~V.~Bludov}},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {124--133},
     year = {2020},
     volume = {32},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2020_32_a9/}
}
TY  - JOUR
AU  - S. F. Vinokurov
AU  - V. I. Panteleev
AU  - N. A. Peryazev
TI  - To the 70th anniversary of the birth of V. V. Bludov
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2020
SP  - 124
EP  - 133
VL  - 32
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2020_32_a9/
LA  - ru
ID  - IIGUM_2020_32_a9
ER  - 
%0 Journal Article
%A S. F. Vinokurov
%A V. I. Panteleev
%A N. A. Peryazev
%T To the 70th anniversary of the birth of V. V. Bludov
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2020
%P 124-133
%V 32
%U http://geodesic.mathdoc.fr/item/IIGUM_2020_32_a9/
%G ru
%F IIGUM_2020_32_a9
S. F. Vinokurov; V. I. Panteleev; N. A. Peryazev. To the 70th anniversary of the birth of V. V. Bludov. The Bulletin of Irkutsk State University. Series Mathematics, Tome 32 (2020), pp. 124-133. http://geodesic.mathdoc.fr/item/IIGUM_2020_32_a9/

[1] Bludov V. V., “An example of an unordered group with strictly isolated identity element”, Algebra and Logic, 11:6 (1972), 341–349 | DOI | MR | Zbl

[2] Bludov V. V., Medvedev N.Ya., “On the completion of ordered metabelian groups”, Algebra and Logic, 13:4 (1974), 207–209 | DOI | MR

[3] Bludov V. V., “Uniquely orderable groups”, Algebra and Logic, 13:6 (1974), 343–360 | DOI | MR | Zbl

[4] Bludov V. V., Kokorin A. I., “T-generically ordered groups”, Sib. Math. Journal, 13:6 (1979), 868–872 | DOI | MR | Zbl

[5] Bludov V. V., Kleimenov V. F., “Construction of ordered groups with applications”, Sib. Math. Journal, 22:4 (1981), 524–531 ; 110 | DOI | MR | Zbl

[6] Bludov V. V., Kokorin A. I., “Use of computers in solving well-known algebra problems”, Cybernetics and Systems Analysis, 18:6 (1982), 819–829 | DOI | MR

[7] Bludov V. V., Kleimenov V. F., Khlamov E. V., “Counterexample to a question of A.Yu. Ol'shanskii”, Algebra and Logic, 29:2 (1990), 95–96 | DOI | MR | Zbl

[8] Bludov V. V., “File bases in groups”, Algebra and Logic, 34:3 (1995), 131–139 | DOI | MR | Zbl

[9] Bludov V. V., “On locally nilpotent groups”, Problems of Algebra and Logic, Proc. Inst. of Math. Siberian Branch of RAS, 30, Novosibirsk, 1996, 26–47 (in Russian) | Zbl

[10] Bludov V. V., “On free product with amalgamation of right ordered groups”, Actual Problems of Modern Mathematics, v. 2, Novosibirsk, 1996, 30–35 (in Russian) | Zbl

[11] Bludov V. V., “On Frobenius groups”, Sib. Math. Journal, 38:6 (1997), 1054–1056 | DOI | MR | Zbl

[12] Bludov V. V., “On Locally Nilpotent Groups”, Siberian Advances in Mathematics, 8:1 (1998), 49–79 | MR

[13] Bludov V. V., “Locally nilpotent groups with the minimal condition on centralizers”, Algebra and Logic, 37:3 (1998), 151–156 | DOI | MR | Zbl

[14] Bludov V. V., “On locally nilpotent groups with the minimal condition on centralizers”, Groups St Andrews (Bath, 1997), London Math. Soc. LN Series, 260, Cambridge. Univ. Press, 1999, 81–84 | MR | Zbl

[15] Bludov V. V., “Ordered groups in which every automorphism preserves the order”, Ordered Algebraic Structures. Algebra, Logic and Applications, 16 (2001), 23–28 | MR | Zbl

[16] Bludov V. V., “Group Quasivarieties with Infinitely Many Maximal Subquasivarieties”, Algebra and Logic, 41:1 (2002), 1–7 | DOI | MR | Zbl

[17] Bludov V. V., “The Axiomatic Rank of the Quasivariety of Orderable Groups Is Infinite”, Sib. Math. Journal, 43:4 (2002), 623–625 | DOI | MR | Zbl

[18] Bludov V. V., Glass A. M. W., Rhemtulla A. H., “Ordered groups in which all convex jumps are central”, J. Korean Math. Soc., 40 (2003), 225–239 | DOI | MR | Zbl

[19] Bludov V. V., Lapshina E. S., “On Ordering the Groups with Nilpotent Commutant”, Sib. Math. Journal, 44:3 (2003), 405–410 | DOI | MR | Zbl

[20] Bludov V. V., “On the completion of ordered metabelian groups”, Algebra and Logic, 13:4 (1974), 207–209 | DOI | MR | MR | Zbl

[21] Bludov V. V., Glass A. M. W., Rhemtulla A. H., “On centrally orderable groups”, Journal of Algebra, 291 (2005), 129–143 | DOI | MR | Zbl

[22] Bludov V. V., “Completion of Linearly Ordered Groups”, Algebra and Logic, 44:6 (2005), 664–681 (in Russian) | DOI | MR | Zbl

[23] Bludov V. V., Glass A. M. W., “On the variety generated by all nilpotent lattice-ordered groups”, Trans. Amer. Math. Soc., 358 (2006), 5179–5192 | DOI | MR | Zbl

[24] Bludov V. V., Gusev B. V., “Geometric equivalence of groups”, Proc. Steklov Institute of Math., 257, suppl. 1 (2007), S61–S82 | DOI | MR | Zbl

[25] Bludov V. V., Dolbak L. V., “On metabelian groups with derived quotient an elementary Abelian 2-group of rank 3”, Siberian Electronic Math. Reports, 4 (2007), 361–375 | MR | Zbl

[26] Bludov V. V., Glass A. M. W., Giraudet M., Sabbagh S., “Automorphism groups of models of first order theories”, Models, Modules and Abelian Groups, In Memory of A. L. S. Corner, Berlin, 2008, 329–332 | MR

[27] Bludov V. V., Kopytov V. M., “Extensions of lattice-ordered groups”, Algebra and Logic, 47:5 (2008), 297–303 (in Russian) | DOI | MR | Zbl

[28] Bludov V. V., Glass A. M. W., “Conjugacy in lattice-ordered and right ordered groups”, J. Group Theory, 11 (2008), 623–633 | DOI | MR | Zbl

[29] Bludov V. V., Glass A. M. W., “On free products of right ordered groups with amalgamated subgroups”, Mathematical Proceedings of the Cambridge Philosophical Society, 146:03 (2009), 591–601 | DOI | MR | Zbl

[30] Bludov V. V., Kopytov V. M., Rhemtulla A. H., “Normal relatively convex subgroups of solvable orderable groups”, Algebra and Logic, 48:3 (2009), 163–172 | DOI | MR | Zbl

[31] Bludov V. V., “On residually torsion-free-nilpotent groups”, J. Group Theory, 12:4 (2009), 579–590 | DOI | MR | Zbl

[32] Bludov V. V., Glass A. M. W., “Word problems, embeddings, and free products of right-ordered groups with amalgamated subgroups”, Proc. London Math. Soc., 99 (2009), 585–608 | DOI | MR | Zbl

[33] Bludov V. V., Glass A. M.W., “Groups and orderings: word problems, embeddings and amalgams (a survey of recent results)”, The Bulletin of Irkutsk State University. Series Mathematics, 2:2 (2009), 4–19 (in Russian)

[34] Bludov V. V., Glass A. M. W., Droste M., “Automorphism groups of totally ordered sets: a retrospective survey”, Mathematica Slovaca, 61:3 (2011), 373–388 | DOI | MR | Zbl

[35] Bludov V. V., Glass A. M. W., “Right orders and amalgamation for lattice-ordered groups”, Mathematica Slovaca, 61:3 (2011), 355–372 | DOI | MR | Zbl

[36] Bludov V. V., Glass A. M. W., “A survey of resent results in groups and ordering: word problems, embeddings and amalgamations”, Groups St Andrews (Bath, 2009), v. 1, London Math. Soc. LN Series, 387, eds. Campbell C. M. et al., Cambridge Univ. Press., 2011, 150–160 | DOI | MR | Zbl

[37] Bludov V. V., Glass A. M. W., “A finitely presented orderable group with insoluble word problem”, Bull. London Math. Soc., 44:1 (2012), 85–96 | DOI | MR

[38] Bludov V. V., Badmaeva L. E., “On the method constructing of orderable soluble groups with finitely many orderings”, Izvestiya of Irkutsk State Economics Academy, 2014, no. 6 (98), 152–158 (in Russian) | DOI

[39] Bludov V. V., Glass A. M. W., “Amalgamation bases for the class of lattice-ordered groups”, Mathematica Slovaca, 64:3 (2014), 571–578 | DOI | MR | Zbl

[40] Bludov V. V., Vinokurov S. F., Panteleev V. I., Peryazev N. A., “About scientific and pedagogical activity of A. I. Kokorin”, The Bulletin of Irkutsk State University. Series Mathematics, 29 (2019), 138–154 (in Russian) | DOI | MR | Zbl