Mots-clés : exact solutions
@article{IIGUM_2020_32_a2,
author = {N. V. Burmasheva and E. Yu. Prosviryakov},
title = {A class of exact solutions for two{\textendash}dimensional equations of geophysical hydrodynamics with two {Coriolis} parameters},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {33--48},
year = {2020},
volume = {32},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2020_32_a2/}
}
TY - JOUR AU - N. V. Burmasheva AU - E. Yu. Prosviryakov TI - A class of exact solutions for two–dimensional equations of geophysical hydrodynamics with two Coriolis parameters JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2020 SP - 33 EP - 48 VL - 32 UR - http://geodesic.mathdoc.fr/item/IIGUM_2020_32_a2/ LA - ru ID - IIGUM_2020_32_a2 ER -
%0 Journal Article %A N. V. Burmasheva %A E. Yu. Prosviryakov %T A class of exact solutions for two–dimensional equations of geophysical hydrodynamics with two Coriolis parameters %J The Bulletin of Irkutsk State University. Series Mathematics %D 2020 %P 33-48 %V 32 %U http://geodesic.mathdoc.fr/item/IIGUM_2020_32_a2/ %G ru %F IIGUM_2020_32_a2
N. V. Burmasheva; E. Yu. Prosviryakov. A class of exact solutions for two–dimensional equations of geophysical hydrodynamics with two Coriolis parameters. The Bulletin of Irkutsk State University. Series Mathematics, Tome 32 (2020), pp. 33-48. http://geodesic.mathdoc.fr/item/IIGUM_2020_32_a2/
[1] Aristov S. N., Eddy currents in thin liquid layers. Optimization of boundary and distributed controls in semilinear hyperbolic systems, Dr. Sci. Phys.-Math. Diss., Vladivostok, 1990, 303 pp. (in Russian)
[2] Aristov S. N., Myasnikov V. P., “Time-dependent three-dimensional structures in the near–surface layer of the ocean”, Physics. Doklady, 41:8 (1996), 358–360 | Zbl
[3] Aristov S. N., Knyazev D. V., Polyanin A. D., “Exact solutions of the Navier-Stokes Equations with the linear dependence of velocity components on two space variables”, Theoretical Foundations of Chemical Engineering, 43:5 (2009), 642–662 | DOI
[4] Aristov S. N., Prosviryakov E. Y., “Inhomogeneous Couette flow”, Russian Journal of Nonlinear Dynamics, 10:2 (2014), 177–182 (in Russian) | DOI | Zbl
[5] Aristov S. N., Prosviryakov E. Y., “Large–scale flows of viscous incompressible vortical fluid”, Russian Aeronautics, 58:4 (2015), 413–418 | DOI
[6] Aristov S. N., Prosviryakov E. Yu., “A new class of exact solutions for three–dimensional thermal diffusion equations”, Theoretical Foundations of Chemical Engineering, 50:3 (2016), 286–293 | DOI | DOI
[7] Aristov S. N., Frik P. G., Dynamics of large–scale flows in thin liquid layers, Preprint No 146, Institute of Continuous Media Mechanics, Academy of Sciences USSR, Sverdlovsk, 1987, 48 pp. (in Russian)
[8] Aristov S. N., Frik P. G., “Nonlinear effects of the Ekman layer on the dynamics of large–scale eddies in shallow water”, Journal of Applied Mechanics and Technical Physics, 32:2 (1991), 189–194 | DOI
[9] Aristov S. N., Shvartc K. G., Vortex flows of an advective nature in a rotating fluid layer, Perm State University, Perm, 2006, 153 pp.
[10] Burmasheva N. V., Prosviryakov E. Yu., “Thermocapillary convection of a vertical swirling liquid”, Theoretical Foundations of Chemical Engineering, 54:1 (2020), 230–239 | DOI | DOI | MR
[11] Burmasheva N. V., Prosviryakov E.Yu., “Exact solution of Navier–Stokes equations describing spatially inhomogeneous flows of a rotating fluid”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 26, no. 2, 2020, 79–87 (in Russian) | MR
[12] Gorshkov A. V., Prosviryakov E. Y., “Ekman convective layer flow of a viscous incompressible fluid”, Izvestiya. Atmospheric and Oceanic Physics, 54:2 (2018), 189–195 | DOI | DOI | MR
[13] Gushchin V. A., Rozhdestvenskaya T. I., “Numerical study of the effects occurring near a circular cylinder in stratified fluid flows with short buoyancy periods”, Journal of Applied Mechanics and Technical Physics, 52:6 (2011), 905–911 | DOI | Zbl
[14] Ziryanov V. N., Theory of steady ocean currents, Gidrometeoizdat Publ., L., 1985, 248 pp. (in Russian) | MR
[15] Kalashnik M. V., Chkhetiani O. G., “Optimal perturbations with zero potential vorticity in the Eady model”, Izvestiya. Atmospheric and Oceanic Physics, 54:5 (2018), 415–422 | DOI | DOI
[16] Kalashnik M. V., Chkhetiani O. G., Chagelishvili G. D., “A new class of edge baroclinic waves and the mechanism of their generation”, Izvestiya. Atmospheric and Oceanic Physics, 54:4 (2018), 305–312 | DOI | DOI
[17] Koprov B. M., Koprov V. M., Solenaya O. A., Chkhetiani O. G., Shishov E. A., “Technique and results of measurements of turbulent helicity in a stratified surface layer”, Izvestiya. Atmospheric and Oceanic Physics, 54:5 (2018), 446–455 | DOI | DOI
[18] Korotaev G. K., Mikhaylova E. N., Shapiro N. B., The theory of equatorial countercurrents in the oceans, Naukova Dumka Publ, Kiev, 1986, 208 pp. (in Russian)
[19] Monin A. S., Theoretical foundations of geophysical hydrodynamics, Gidrometeoizdat Publ., L., 1988, 424 pp. (in Russian)
[20] Pedlosky J., Geophysical fluid dynamics, Springer-Verlag, Berlin–New York, 1987, 710 pp. | Zbl
[21] Sidorov A. F., “Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory”, Journal of Applied Mechanics and Technical Physics, 30:2 (1989), 197–203 | DOI
[22] Chkhetiani O. G., Vazaeva N. V., “On algebraic perturbations in the atmospheric boundary layer”, Izvestiya. Atmospheric and Oceanic Physics, 55:5 (2019), 432–445 | DOI | DOI | MR
[23] Aristov S. N., Nycander J., “Convective ow in baroclinic vortices”, Journal Physical Oceanography, 24:9 (1994), 18411849 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[24] Burmasheva N. V., Larina E. A., Prosviryakov E. Yu., “Unidirectional convective flows of a viscous incompressible fluid with slippage in a closed layer”, AIP Conference Proceedings, 2176 (2019), 030023 | DOI
[25] Burmasheva N. V., Prosviryakov E.Yu., “Convective layered flows of a vertically whirling viscous incompressible fluid. Velocity field investigation”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 23:2 (2019), 341–360 | DOI | Zbl
[26] Couette M., “Etudes sur le frottement des liquides”, Annales de chimie et de physique, 21 (1890), 433–510
[27] Ekman V. W., “On the influence of the Earth's rotation on ocean currents”, Arkiv för matematik, astronomi och fysik, 2:11 (1905), 1–52
[28] Hoff M., Harlander U., “Stewartson–layer instability in a wide-gap spherical Couette experiment: Rossby number dependence”, Journal of Fluid Mechanics, 878 (2019), 522–543 | DOI | MR | Zbl
[29] Lin C. C., “Note on a class of exact solutions in magneto-hydrodynamics”, Archive for Rational Mechanics and Analysis, 1 (1958), 391–395 | DOI | MR | Zbl
[30] Meirelles S., Vinzon S. B., “Field observation of wave damping by fluid mud”, Marine Geology, 376 (2016) | DOI
[31] Patel P. D., Christman P. G., Gardner J. W., “Investigation of unexpectedly low field–observed fluid mobilities during some CO2 tertiary floods”, SPE Reservoir Engineering, 2:4 (1987), 507–513 | DOI
[32] Polyanin A. D., Zaitsev V. F., Handbook of exact solutions for ordinary differential equations, 2nd ed., Chapman Hall/CRC, Boca Raton, 2003, 803 pp. | MR
[33] Precigout J., Prigent C., Palasse L., Pochon A., “Water pumping in mantle shear zones”, Nature Communications, 8 (2017), 15736 | DOI
[34] Privalova V. V., Prosviryakov E. Yu., Simonov M. A., “Nonlinear gradient flow of a vertical vortex fluid in a thin layer”, Russian Journal of Nonlinear Dynamics, 15:3 (2019), 271–283 | DOI | MR | Zbl
[35] Smagorinsky J., “History and progress”, The Global Weather Experiment–Perspective on Its Implementation and Exploitation, A Report of the FGGE Advisory Panel to the U. S. Committee for the Global Atmospheric Research Program (GARP), National Academy of Science, 1978, 4–12
[36] Smagorinsky J., “The beginnings of numerical weather prediction and general circulation modeling: Early recollections”, Advances in Geophysics, 25 (1983), 3–37 | DOI
[37] Smagorinsky J., Phillips N. A., “Scientific problems of the global weather experiment”, The Global Weather Experiment, Perspectives on Its Implementation and Exploitation, A Report of the FGGE Advisory Panel to the U. S. Committee for the Global Atmospheric Research Program (GARP), National Academy of Science, 1978, 13–21
[38] Stefani F., Gerbeth G., Gundrum Th., Szklarski J., Rudiger G., Hollerbach R., “Liquid metal experiments on the magnetorotational instability”, Magnetohydrodynamics, 45:2 (2009), 135–144 | DOI
[39] Woumeni R. S., Vauclin M., “A field study of the coupled effects of aquifer stratification, fluid density, and groundwater fluctuations on dispersivity assessments”, Advances in Water Resources, 29:7 (2006), 1037–1055 | DOI