@article{IIGUM_2020_32_a0,
author = {L. Altangerel and G. Battur},
title = {An exact penalty approach and conjugate duality for generalized nash equilibrium problems with coupling and shared constraints},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {3--16},
year = {2020},
volume = {32},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2020_32_a0/}
}
TY - JOUR AU - L. Altangerel AU - G. Battur TI - An exact penalty approach and conjugate duality for generalized nash equilibrium problems with coupling and shared constraints JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2020 SP - 3 EP - 16 VL - 32 UR - http://geodesic.mathdoc.fr/item/IIGUM_2020_32_a0/ LA - en ID - IIGUM_2020_32_a0 ER -
%0 Journal Article %A L. Altangerel %A G. Battur %T An exact penalty approach and conjugate duality for generalized nash equilibrium problems with coupling and shared constraints %J The Bulletin of Irkutsk State University. Series Mathematics %D 2020 %P 3-16 %V 32 %U http://geodesic.mathdoc.fr/item/IIGUM_2020_32_a0/ %G en %F IIGUM_2020_32_a0
L. Altangerel; G. Battur. An exact penalty approach and conjugate duality for generalized nash equilibrium problems with coupling and shared constraints. The Bulletin of Irkutsk State University. Series Mathematics, Tome 32 (2020), pp. 3-16. http://geodesic.mathdoc.fr/item/IIGUM_2020_32_a0/
[1] Altangerel L., Battur G., “Perturbation approach to generalized Nash equilibrium problems with shared constraints”, Optimization Letters, 6 (2012), 1379–1391 | DOI | MR | Zbl
[2] Boţ R.I., Duality and optimality in multiobjective optimization, Ph.D. Dissertation, Faculty of Mathematics, Chemnitz University of Technology, 2003
[3] Boţ R.I., Wanka G., “The conjugate of the pointwise maximum of two convex functions revisited”, Journal of Global Optimization, 41:4 (2008), 625–632 | DOI | MR | Zbl
[4] Facchinei F., Kanzow C., “Generalized Nash equilibrium problems”, Annals of Operations Research, 175:1 (2010), 177–211 | DOI | MR | Zbl
[5] Facchinei F., Kanzow C., “Penalty methods for the solution of generalized Nash equilibrium problems”, SIAM Journal on Optimization, 2010, no. 5, 2228–2253 | DOI | MR | Zbl
[6] Facchinei F., Pang J.-S., “Exact penalty functions for generalized Nash problems”, Large scale nonlinear optimization, eds. Di Pillo G., Roma M., Springer, New York, 2006, 115–126 | DOI | MR | Zbl
[7] Facchinei F., Lampariello L., “Partial penalization for the solution of generalized Nash equilibrium problems”, Journal of Global Optimization, 50 (2011), 39–57 | DOI | MR | Zbl
[8] Facchinei F., Pang J.-S., Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer Publ., New York, 2003 | MR
[9] Fukushima M., Restricted generalized Nash equilibria and controlled penalty algorithm, Technical Report 2008-007, Department of Applied Mathematics and Physics, Kyoto University, July 2008 | MR
[10] Fukushima M., Pang J.-S., “Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games”, Comput. Manag. Sci., 2 (2005), 21–56 | DOI | MR | Zbl
[11] Kubota K., Fukushima M., “Gap Function Approach to the Generalized Nash Equilibrium Problem”, Journal of Optimization Theory and Applications, 144:3 (2010), 511–531 | DOI | MR | Zbl
[12] Harker P. T., “Generalized Nash games and quasi-variational inequalities”, Eur. J. Oper. Res., 54 (1991), 81–94 | DOI | Zbl
[13] von Heusinger A., Kanzow C., “Relaxation methods for generalized Nash equilibrium problems with inexact line search”, Journal of Optimization Theory and Applications, 143:1 (2009), 159–183 | DOI | MR | Zbl
[14] Nabetani K., Tseng P., Fukushima M., “Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints”, Computational Optimization and Applications, 48 (2011), 423–452 | DOI | MR | Zbl
[15] Wei J.-Y., Smeers Y., “Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices”, Oper. Res., 47 (1999), 102–112 | DOI | Zbl