Fractional smoothness of distributions of trigonometric polynomials on a space with a Gaussian measure
The Bulletin of Irkutsk State University. Series Mathematics, Tome 31 (2020), pp. 78-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study properties of images of a gaussian measure under trigonometric polynomials of a fixed degree, defined on finite-dimensional space with fixed number of dimensions. We prove that the images of the $n$-dimensional Gaussian measure under trigonometric polynomials have densities from the Nikolskii–Besov class of fractional parameter. This property of images of a gaussian measure is used for estimating the total variation distance between such images via the Fortet–Mourier distance. We also generalize these results to the case of $k$-dimensional mappings whose components are trigonometric polynomials.
Mots-clés : Nikolskii–Besov class
Keywords: Gaussian measure, distribution of a trigonometric polynomial.
@article{IIGUM_2020_31_a5,
     author = {G. I. Zelenov},
     title = {Fractional smoothness of distributions of trigonometric polynomials on a space with a {Gaussian} measure},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {78--95},
     year = {2020},
     volume = {31},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2020_31_a5/}
}
TY  - JOUR
AU  - G. I. Zelenov
TI  - Fractional smoothness of distributions of trigonometric polynomials on a space with a Gaussian measure
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2020
SP  - 78
EP  - 95
VL  - 31
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2020_31_a5/
LA  - ru
ID  - IIGUM_2020_31_a5
ER  - 
%0 Journal Article
%A G. I. Zelenov
%T Fractional smoothness of distributions of trigonometric polynomials on a space with a Gaussian measure
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2020
%P 78-95
%V 31
%U http://geodesic.mathdoc.fr/item/IIGUM_2020_31_a5/
%G ru
%F IIGUM_2020_31_a5
G. I. Zelenov. Fractional smoothness of distributions of trigonometric polynomials on a space with a Gaussian measure. The Bulletin of Irkutsk State University. Series Mathematics, Tome 31 (2020), pp. 78-95. http://geodesic.mathdoc.fr/item/IIGUM_2020_31_a5/

[1] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, v. 1, 2, 2-e izd., Nauka, M., 1996, 480 pp.; Besov O. V., Il'in V.P., Nikol'ski{ĭ} S.M., Integral representations of functions and imbedding theorems, v. I, II, Winston Sons, Washington, 1978 ; Halsted Press, New York–Toronto–London, 1979, 480 pp. | MR | Zbl

[2] Bogachev V. I., “Distributions of polynomials on multidimensional and infinite-dimensional spaces with measures”, Russian Math. Surveys, 71:4 (2016), 703–749 | DOI | DOI | MR | Zbl

[3] Bogachev V. I., Zelenov G. I., Kosov E. D., “Membership of distributions of polynomials in the Nikolskii–Besov class”, Dokl. Math., 94:2 (2016), 453–457 | DOI | MR | Zbl

[4] Bogachev V. I., Kosov E. D., Popova S. N., “Kharakterizatsiya klassov Nikolskogo–Besova cherez integrirovanie po chastyam”, Doklady Akademii nauk, 476:3 (2017), 251–255 | DOI | Zbl

[5] Bogachev V. I., Kosov E. D., Popova S. N., “On Gaussian Nikolskii–Besov classes”, Dokl. Math., 96:2 (2017), 498–502 | DOI | MR | Zbl

[6] Davydov Y. A., Martynova G. V., “Limit behavior of multiple stochastic integral”, Statistics and Control of Random Processes, Nauka, Preila, M., 1987, 55–57 (in Russian)

[7] Kosov E. D., “Besov classes on a space with a Gaussian measure”, Dokl. Math., 97:1 (2018), 20–22 | DOI | DOI | MR | Zbl

[8] Kosov E. D., “Besov classes on finite- and infinite-dimensional spaces”, Sb. Math., 210:5 (2019), 663–692 | DOI | DOI | MR | Zbl

[9] Martynova G. V., Limit theorems for the functionals of random procceses, Cand. sci. dis., LGU Publ., L., 1987 (in Russian)

[10] Nazarov F. L., “Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type”, St. Petersburg Math. J., 5:4 (1994), 663–717 | MR

[11] Nazarov F., Sodin M., Volberg A., “The geometric Kannan–Lovasz–Simonovits lemma, dimension-free estimates for the distribution of the values of polynomials, and the distribution of the zeros of random analytic functions”, St. Petersburg Math. J., 14:2 (2003), 351–366 | DOI | MR | MR | Zbl

[12] Nikol'ski{ĭ} S.M., Approximation of functions of several variables and imbedding theorems, Springer-Verlag, New York–Heidelberg, 1975, 456 pp. | MR | Zbl

[13] Adams R. A., Fournier J. J., Sobolev spaces, Academic Press, New York, 2003, 310 pp. | MR | Zbl

[14] Bogachev V. I., Differentiable measures and the Malliavin calculus, Amer. Math. Soc., Rhode Island, Providence, 2010, 510 pp. | MR | Zbl

[15] Bogachev V. I., Gaussian measures, Amer. Math. Soc., Providence, Rhode Island, 1998, 450 pp. | MR | Zbl

[16] Bogachev V. I., Measure theory, v. 1, 2, Springer, New York, 2007, 1170 pp. | DOI | MR | Zbl

[17] Bogachev V. I., Kosov E. D., Popova S. N., “A new approach to Nikolskii–Besov classes”, Moscow Math. J., 19:4 (2019), 619–654 | DOI | MR | Zbl

[18] Bogachev V., Kosov E., Zelenov G., “Fractional smoothness of distributions of polynomials and a fractional analog of the Hardy–Landau–Littlewood inequality”, Trans. Amer. Math. Soc., 370:6 (2018), 4401–4432 | DOI | MR | Zbl

[19] Carbery A., Wright J., “Distributional and $L^q$ norm inequalities for polynomials over convex bodies in $\mathbb R^n$”, Math. Research Lett., 8:3 (2001), 233–248 | DOI | MR | Zbl

[20] Davydov Y. A., “On distance in total variation between image measures”, Statistics Probability Letters, 129 (2017), 393–400 | DOI | MR | Zbl

[21] Fortet R., Mourier E., “Convergence de la répartition empirique vers la répartition théorique”, Ann. Sci. École Norm. Sup., 70:3 (1953), 267–285 | DOI | MR | Zbl

[22] Kosov E. D., “Fractional smoothness of images of logarithmically concave measures under polynomials”, J. Math. Anal. Appl., 462:1 (2018), 390–406 | DOI | MR | Zbl

[23] Nourdin I., Nualart D., Poly G., “Absolute continuity and convergence of densities for random vectors on Wiener chaos”, Electron. J. Probab., 18:22 (2013), 1–19 | DOI | MR

[24] Nourdin I., Poly G., “Convergence in total variation on Wiener chaos”, Stochastic Process. Appl., 123:2 (2013), 651–674 | DOI | MR | Zbl

[25] Stein E., Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970, 287 pp. | MR | Zbl

[26] Zelenov G. I., “On distances between distributions of polynomials”, Theory Stoch. Processes, 22:2 (2017), 79–85 | MR | Zbl